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1 Introduction

String field theory1 can potentially be a background-independent formulation of string

theory. In the current formulation of string field theory, however, we first need to choose

one conformal field theory (CFT) describing a consistent background of string theory. The

crucial question is then whether other string backgrounds can be described as classical

solutions of string field theory. In particular, for each exactly marginal deformation of

the CFT, we expect to have a family of solutions in string field theory labeled by the

deformation parameter.

Recent remarkable developments in analytic methods of open string field theory [5]–[26]

enabled us to address this question in a concrete setting. Analytic solutions for marginal

deformations when operator products of the marginal operator are regular were constructed

to all orders in the deformation parameter in [17, 18] for open bosonic string field theory [27]

and in [19, 20, 22] for open superstring field theory [28]. When the operator product of

the marginal operator is singular, analytic solutions were constructed to third order in the

deformation parameter in [18]. Recently, analytic solutions for the deformation generated

by the zero mode of the gauge field were constructed in [21] by a different approach and

extended to open superstring field theory in [25]. While the equation of motion is satisfied

to all orders in the deformation parameter, a closed form expression for a solution satisfying

the reality condition on the string field has not been presented in [21, 25]. See [29]–[43] for

earlier study of marginal deformations in string field theory and related work.

In this paper, we present a procedure to construct a solution satisfying the reality

condition in open bosonic string field theory for any exactly marginal deformation in any

boundary CFT when properly renormalized operator products of the marginal operator

are given. The analytic solutions in [17, 18] were constructed using unintegrated vertex

operators and b-ghost insertions. Our strategy is to use integrated vertex operators, which

are closely related to finite deformations in boundary CFT. We assume several properties

of the properly renormalized operator products of the marginal operator, which we believe

are satisfied for any exactly marginal deformation in any boundary CFT. Since the iden-

tification of a set of assumptions which are sufficient for the construction of a solution is

one of the main points of the paper, we will explain these assumptions in detail in the

following. We will then present our solutions.

1.1 Assumptions

For any exactly marginal deformation in a given boundary CFT, we have a family of

consistent boundary conditions labeled by the deformation parameter which we denote by

λ. Consider the boundary CFT on the upper-half plane and suppose that we change

boundary conditions on a segment of the boundary between a and b. Since the new

boundary condition is also conformal, an integral of the BRST current along a contour

vanishes if both end points of the contour lie inside the region between a and b. By

C(tf , ti) we denote a contour in the upper-half plane which starts from the point ti on the

1 See [1–4] for reviews.
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Figure 1. Illustration of (1.1). The bold line indicates a change of boundary conditions on the

segment between a and b. The integral of the BRST current in (1.1) vanishes when a < tf < ti < b.

= +

Figure 2. Illustration of (1.2). When tf < a < b < ti, the integral of the BRST current on the

left-hand side decomposes into a sum of two integrals localized at the end points a and b of the

segment.

real axis and ends on tf on the real axis, and we use C(tf , ti) with tf < ti in what follows.

We have ∫

C(tf , ti)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]
= 0 when a < tf < ti < b , (1.1)

where jB(z) and ̃B(z̄) are the holomorphic and antiholomorphic components of the BRST

current, respectively. See figure 1. This identity holds inside any correlation function of

the deformed CFT as long as no operators are inserted between the contour C(tf , ti) and

the real axis. When tf < a < b < ti, there are contributions from the points a and b where

the boundary condition changes:
∫

C(tf , ti)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]

=

∫

C(b)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]
+

∫

C(a)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]
,

(1.2)

where we have defined the infinitesimal contour C(t) around any point t by

C(t) = lim
ǫ→0

C(t − ǫ, t + ǫ) . (1.3)

See figure 2. The nonvanishing contributions in (1.2) can be thought of as the BRST

transformations of the boundary-condition changing operators. We also have
∫

C(tf , ti)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

] ∫

C(a)

[ dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]

= −
∫

C(a)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

] ∫

C(b)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]
,

(1.4)
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Figure 3. Illustration of (1.4). With the presence of the BRST integral localized at a, the integral

of the BRST current along C(tf , ti) on the left-hand side localizes only at the other end point b

because of the nilpotency of the BRST transformation.

where again tf < a < b < ti, as shown in figure 3.

The boundary CFT with a different boundary condition on a segment between a and

b discussed above can also be described in the boundary CFT with the original boundary

condition on the whole real axis by inserting an exponential of the marginal operator V (t)

integrated over the segment between a and b,

exp

[
λ

∫ b

a
dt V (t)

]
= 1 + λ

∫ b

a
dt V (t) +

λ2

2!

∫ b

a
dt1

∫ b

a
dt2 V (t1)V (t2) + . . . , (1.5)

into the correlation function. When operator products of the marginal operator are sin-

gular, we need to renormalize the operator (1.5) properly to make it well defined, and we

denote the renormalized operator by

[ eλV (a,b) ]r , (1.6)

where

V (a, b) ≡
∫ b

a
dt V (t) . (1.7)

Then the equations (1.2) and (1.4) can be translated into the following assumptions on the

operator [ eλV (a,b) ]r.

1. The BRST transformation of the operator [ eλV (a,b) ]r takes the following form:

QB · [ eλV (a,b) ]r = [ eλV (a,b) OR(b) ]r − [OL(a) eλV (a,b) ]r , (I)

where OL(a) and OR(b) are some local operators at a and b, respectively.

2. The BRST transformation of the operator [OL(a) eλV (a,b) ]r is given by

QB · [OL(a) eλV (a,b) ]r = − [OL(a) eλV (a,b) OR(b) ]r . (II)

These are our first two assumptions. They are illustrated in figures 4 and 5.

We can also introduce different boundary conditions on different segments on the

boundary by inserting [
n∏

i=1

eλiV (ai,ai+1)

]

r

(1.8)

– 4 –
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Figure 4. Illustration of the assumption (I). The BRST transformation on the operator [ eλV (a,b) ]r
generates local operators OL(a) and OR(b) at the end points of the segment. Compare this figure

with figure 2.

= −

Figure 5. Illustration of the assumption (II). The BRST transformation on the operator

[ OL(a) eλV (a,b) ]r generates the local operator OR(b). Compare this figure with figure 3.

with ai < ai+1 for i = 1, 2, . . . , n into the correlation function. We make the following two

assumptions on this operator.

3. Replacement. When λj+1 = λj, the product eλjV (aj ,aj+1) eλj+1V (aj+1,aj+2) inside the

operator (1.8) can be replaced by eλjV (aj ,aj+2):

[ . . . eλjV (aj ,aj+1) eλjV (aj+1,aj+2) . . . ]r = [ . . . eλjV (aj ,aj+2) . . . ]r . (III)

4. Factorization. When λj vanishes, the renormalized product (1.8) factorizes as fol-

lows:

[. . . eλj−1V (aj−1,aj)eλj+1V (aj+1,aj+2) . . .]r = [. . . eλj−1V (aj−1,aj)]r[e
λj+1V (aj+1,aj+2) . . .]r .

(IV)

We also assume that (III) and (IV) hold when OL(a1), OR(an+1), or both of them are

inserted in (1.8).

A change of boundary conditions on a segment between a and b is local and independent

of other regions of the Riemann surface where the boundary CFT is defined. Thus the

operator [ eλV (a,b) ]r should be independent of the global shape of the Riemann surface.

However, renormalization schemes such as the standard normal ordering can depend on

the global shape of the surface through the propagator, and normal ordered products of

nonlocal operators generically do depend on the surface. We consider boundary conformal

field theory defined on a family of semi-infinite cylinders Wn obtained from the upper-half

plane of z by the identification z ∼ z + n + 1 and make the following assumption.

– 5 –
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5. Locality. The operators [ eλV (a,b) ]r and [OL(a) eλV (a,b) ]r defined on Wn coincide with

those defined on Wm with m > n:

[ eλV (a,b) ]r on Wn = [ eλV (a,b) ]r on Wm ,

[OL(a) eλV (a,b) ]r on Wn = [OL(a) eλV (a,b) ]r on Wm .
(V)

Finally, eλV (a,b) is classically invariant under the reflection where V (t) is replaced by

V (a + b − t), and we assume that [eλV (a,b)]r preserves this symmetry.

6. Reflection. The operator [ eλV (a,b) ]r is invariant under the reflection where V (t) is

replaced by V (a + b − t):

[
exp

(
λ

∫ b

a
dt V (a + b − t)

) ]

r

=

[
exp

(
λ

∫ b

a
dt V (t)

) ]

r

. (VI)

1.2 Solutions

We believe that all of these assumptions are satisfied for any exactly marginal deformation

in any boundary CFT if the composite operators are properly renormalized. When the

operator [ eλV (a,b) ]r expanded in λ as

[ eλV (a,b) ]r =
∞∑

n=0

λn [V (n)(a, b) ]r , (1.9)

where

[V (n)(a, b) ]r ≡ 1

n!
[ (V (a, b))n ]r for n ≥ 1 and [V (0)(a, b) ]r ≡ 1 , (1.10)

is given, we claim that solutions to the equation of motion can be constructed in the

following way.

We first define a state U by

U ≡ 1 +

∞∑

n=1

λn U (n) , (1.11)

where

〈φ , U (n) 〉 = 〈 f ◦ φ(0) [V (n)(1, n) ]r 〉Wn . (1.12)

Here and in what follows we denote a generic state in the Fock space by φ and its corre-

sponding operator in the state-operator mapping by φ(0). The conformal transformation

f(ξ) is

f(ξ) =
2

π
arctan ξ , (1.13)

and we denote the conformal transformation of φ(ξ) under the map f(ξ) by f ◦ φ(ξ). The

correlation function is evaluated on the surface Wn, which we defined above when stating

the locality assumption (V). We represent it in the region of the upper-half plane of z

where −1/2 ≤ Re z ≤ 1/2 + n.

– 6 –
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If the assumption (I) is satisfied, the BRST transformation of the operator [V (n)(a, b) ]r
takes the form

QB · [V (n)(a, b) ]r =
n∑

r=1

[V (n−r)(a, b)O
(r)
R (b) ]r −

n∑

l=1

[O
(l)
L (a)V (n−l)(a, b) ]r , (1.14)

where the local operators OL and OR are expanded as follows:

OL =

∞∑

n=1

λn O
(n)
L , OR =

∞∑

n=1

λn O
(n)
R . (1.15)

Thus the BRST transformation of U can be split into two pieces:

QBU = AR − AL (1.16)

with

AL ≡
∞∑

n=1

λn A
(n)
L , AR ≡

∞∑

n=1

λn A
(n)
R , (1.17)

where

〈φ ,A
(n)
L 〉 =

n∑

l=1

〈 f ◦ φ(0) [O
(l)
L (1)V (n−l)(1, n) ]r 〉Wn ,

〈φ ,A
(n)
R 〉 =

n∑

r=1

〈 f ◦ φ(0) [V (n−r)(1, n)O
(r)
R (n) ]r 〉Wn .

(1.18)

We then define ΨL and ΨR by

ΨL ≡ AL ∗ U−1 , ΨR ≡ U−1 ∗ AR , (1.19)

where U−1 is well defined perturbatively in λ because U = 1 + O(λ). We show that ΨL

and ΨR satisfy the equation of motion,

QBΨL + ΨL ∗ ΨL = 0 , QBΨR + ΨR ∗ ΨR = 0 , (1.20)

though they do not satisfy the reality condition on the string field. They are related by

the gauge transformation generated by U :

ΨR = U−1 ∗ ΨL ∗ U + U−1 ∗ QBU . (1.21)

A solution Ψ satisfying the reality condition is obtained from ΨL or ΨR by gauge trans-

formations as follows:

Ψ =
1√
U

∗ ΨL ∗
√

U +
1√
U

∗ QB

√
U

=
√

U ∗ ΨR ∗ 1√
U

+
√

U ∗ QB
1√
U

=
1

2

[
1√
U

∗ ΨL ∗
√

U +
√

U ∗ ΨR ∗ 1√
U

+
1√
U

∗ QB

√
U − QB

√
U ∗ 1√

U

]
,

(1.22)

– 7 –
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where
√

U and 1/
√

U are defined perturbatively in λ. The three expressions are equivalent

because of the relation (1.21). This solution is the main result of the paper. In section 4, we

explicitly construct [ eλV (a,b) ]r satisfying all the assumptions and apply the general result

to obtain solutions for a class of marginal deformations which include the deformations

of flat D-branes in flat backgrounds by constant massless modes of the gauge field and of

the scalar fields on the D-branes, the cosine potential for a space-like coordinate, and the

hyperbolic cosine potential for the time-like coordinate.

The operators O
(1)
R and O

(1)
L are

O
(1)
R = O

(1)
L = cV (1.23)

for any marginal deformation. This follows only from the fact that the marginal operator

is a primary field of dimension one. When operator products of the marginal operator

are regular, there are no higher-order terms and thus OR = OL = λ cV . For any exactly

marginal deformation where the singular part of the operator product of the marginal

operator with itself is

V (t)V (0) ∼ 1

t2
, (1.24)

the operators O
(2)
L and O

(2)
R are

O
(2)
R = − O

(2)
L =

1

2
∂c . (1.25)

For the class of marginal deformations to be considered in section 4, there are no higher-

order terms and the exact expressions of OR and OL are

OR = λ cV +
λ2

2
∂c , OL = λ cV − λ2

2
∂c . (1.26)

1.3 The organization of the paper

In section 2 we first revisit the problem of constructing solutions for marginal deformations

with regular operator products. In section 2.1 we construct a solution ΨL to the string field

theory equation of motion using integrated vertex operators without b-ghost insertions. The

solution ΨL, however, does not satisfy the reality condition on the string field. In section 2.2

we construct a gauge transformation which connects ΨL and its conjugate solution ΨR, and

then we generate a real solution Ψ using the gauge transformation. During the construction

of this gauge transformation, we find an important identity. It leads us to discover a class

of states Uα, which generalize the wedge states Wα in a deformed background. We study

the properties of Uα in section 2.3.

In the process of constructing the gauge transformation that connects ΨL and ΨR, we

also find another expression of the solution ΨL. We study the new form of ΨL in section 3.1

and prove that it satisfies the equation of motion using the properties of Uα. The new

form of ΨL can be generalized to marginal deformations with singular operator products.

In section 3.2 we construct ΨL for the singular case using the operator [ eλV (a,b) ]r, and we

prove in section 3.3 and in appendix A that it satisfies the equation of motion under the

– 8 –
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assumptions stated in section 1.1. We then generate a real solution Ψ for the singular case

in section 3.4 by an appropriate gauge transformation as in the regular case in section 2.2.

In section 4 we explicitly construct the operator [ eλV (a,b) ]r satisfying the assumptions

stated in section 1.1 for a class of marginal operators with singular operator products

defined in section 4.1. We give several examples of marginal operators included in this class

in section 4.2. In section 4.3 we construct [ eλV (a,b) ]r for the class of marginal operators,

and we prove in section 4.4 and in appendix B that the assumptions stated in section 1.1 are

satisfied. We discuss conformal properties of the operator [OL(a) eλV (a,b) ]r in section 4.5.

In section 5 we discuss string field theory around the deformed background and demon-

strate that it can be elegantly formulated in terms of a new set of algebraic structures by

defining a deformed star product, deformed inner product, and deformed BRST operator.

Section 6 is for discussion, and in appendix C we explain the relation to the previous

work by Fuchs, Kroyter and Potting in [21] for the special case of marginal deformations

corresponding to the constant mode of the gauge field.

2 Marginal deformations with regular operator products

2.1 Solutions using integrated vertex operators

When we calculate n-point scattering amplitudes for open bosonic strings on the disk,

we use three unintegrated vertex operators and n − 3 integrated vertex operators. The

unintegrated vertex operator takes the form cV , where c is the c ghost and V is a matter

primary field of dimension one. The unintegrated vertex operator is invariant under the

BRST transformation:

QB · cV (t) ≡
∫

C(t)

[
dz

2πi
jB(z) − dz̄

2πi
̃B(z̄)

]
cV (t) = 0 . (2.1)

The integrated vertex operator is an integral of V on the boundary. The BRST transfor-

mation of V is a total derivative,

QB · V (t) = ∂t [ cV (t) ] , (2.2)

and thus the integrated vertex operator is invariant under the BRST transformation up to

nonvanishing terms from the boundaries of the integral region:

QB · V (a, b) = QB ·
∫ b

a
dt V (t) =

∫ b

a
dt ∂t [ cV (t) ] = cV (b) − cV (a) . (2.3)

The vertex operator V generates a marginal deformation of the boundary CFT. When the

deformation is exactly marginal, we expect a corresponding solution Ψ to the equation of

motion of open string field theory [27]:

QBΨ + Ψ ∗ Ψ = 0 . (2.4)

In [17, 18], analytic solutions for marginal deformations in open bosonic string field theory

were constructed to all orders in the deformation parameter λ when operator products

– 9 –
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V (t1)V (t2) . . . V (tn) of the marginal operator are regular. The solution in [17, 18] takes

the form of an expansion in λ,

Ψ =
∞∑

n=1

λn Ψ(n) , (2.5)

and the equation of motion for Ψ(n) is

QBΨ(n) = −
n−1∑

i=1

Ψ(n−i) ∗ Ψ(i) . (2.6)

In the solution constructed in [17, 18], Ψ(n) is made of n unintegrated vertex operators and

n−1 b-ghost insertions. In this section, we construct Ψ(n) using one unintegrated and n−1

integrated vertex operators when operator products of the marginal operator are regular.

We choose the first term Ψ(1) of the solution to be

〈φ,Ψ(1) 〉 = 〈 f ◦ φ(0) cV (1) 〉W1 . (2.7)

This satisfies the linearized equation of motion. The starting point of our construction

is the observation that Ψ
(2)
L made of one unintegrated vertex operator and one integrated

vertex operator given by

〈φ ,Ψ
(2)
L 〉 = 〈 f ◦ φ(0) cV (1)V (1, 2) 〉W2 =

∫ 2

1
dt 〈 f ◦ φ(0) cV (1)V (t) 〉W2 (2.8)

solves the equation of motion QBΨ
(2)
L = − Ψ(1) ∗ Ψ(1). This can be shown as follows:

〈φ ,QB Ψ
(2)
L 〉 = −

∫ 2

1
dt 〈 f ◦ φ(0) cV (1) ∂t [ cV (t) ] 〉W2

= − 〈 f ◦ φ(0) cV (1) cV (2) 〉W2

= − 〈φ ,Ψ(1) ∗ Ψ(1) 〉 ,

(2.9)

where we have used the formulas (2.1) and (2.3), and

lim
t2→t1

cV (t1) cV (t2) = 0 , (2.10)

which follows from the condition that the operator product V (t1)V (t2) is regular in the

limit t2 → t1.

Let us next construct a solution to O(λ3). We look for Ψ
(3)
L which satisfies

QB Ψ
(3)
L = − Ψ(1) ∗ Ψ

(2)
L − Ψ

(2)
L ∗ Ψ(1). (2.11)

The right-hand side is given by

− 〈φ ,Ψ(1) ∗ Ψ
(2)
L + Ψ

(2)
L ∗ Ψ(1) 〉 = − 〈 f ◦ φ(0) cV (1) cV (2)V (2, 3) 〉W3

− 〈 f ◦ φ(0) cV (1)V (1, 2) cV (3) 〉W3 .
(2.12)
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First consider the state Ψ
(3)
L1 defined by

〈φ ,Ψ
(3)
L1 〉 = 〈 f ◦ φ(0) cV (1)V (1, 2)V (2, 3) 〉W3 . (2.13)

The BRST transformation of Ψ
(3)
L1 is

〈φ ,QB Ψ
(3)
L1 〉 = − 〈 f ◦ φ(0) cV (1) cV (2)V (2, 3) 〉W3

− 〈 f ◦ φ(0) cV (1)V (1, 2) cV (3) 〉W3

+ 〈 f ◦ φ(0) cV (1)V (1, 2) cV (2) 〉W3 .

(2.14)

The first two terms precisely give −Ψ(1)∗Ψ
(2)
L −Ψ

(2)
L ∗Ψ(1). To cancel the last term, consider

Ψ
(3)
L2 defined by

〈φ ,Ψ
(3)
L2 〉 =

1

2
〈 f ◦ φ(0) cV (1) (V (1, 2))2 〉W3 . (2.15)

Using the formula

QB · (V (a, b))n = n [ (V (a, b))n−1 cV (b) − cV (a) (V (a, b))n−1 ] , (2.16)

which holds for marginal operators with regular operator products, the BRST transforma-

tion of Ψ
(3)
L2 can be calculated as follows:

〈φ ,QB Ψ
(3)
L2 〉 = − 〈 f ◦ φ(0) cV (1)V (1, 2) cV (2) 〉W3 . (2.17)

This cancels the last term on the right-hand side of (2.14). Therefore, Ψ
(3)
L can be con-

structed by adding Ψ
(3)
L2 to Ψ

(3)
L1 :

〈φ,Ψ
(3)
L 〉 = 〈φ,Ψ

(3)
L1 + Ψ

(3)
L2 〉

= 〈f ◦ φ(0)cV (1)V (1, 2)V (2, 3)〉W3 +
1

2
〈f ◦ φ(0)cV (1) (V (1, 2))2〉W3 .

(2.18)

To generalize this solution to higher orders, it turns out to be crucial to rewrite Ψ
(3)
L

in a different form. Using a path-ordered expression for Ψ
(3)
L2 , Ψ

(3)
L can also be written as

〈φ,Ψ
(3)
L 〉 =

∫ 2

1
dt1

∫ 3

2
dt2〈f ◦ φ(0)cV (1)V (t1)V (t2)〉W3

+

∫ 2

1
dt1

∫ 2

t1

dt2〈f ◦ φ(0)cV (1)V (t1)V (t2)〉W3

=

∫ 2

1
dt1

∫ 3

t1

dt2〈f ◦ φ(0)cV (1)V (t1)V (t2)〉W3 .

(2.19)

See figure 6. It is instructive to see how Ψ
(3)
L in this form satisfies the equation of motion.

The BRST transformation of Ψ
(3)
L is given by

〈φ ,QBΨ
(3)
L 〉 = −

∫ 2

1
dt1

∫ 3

t1

dt2 〈 f ◦ φ(0) cV (1) ∂t1 [ cV (t1) ]V (t2) 〉W3

−
∫ 2

1
dt1

∫ 3

t1

dt2 〈 f ◦ φ(0) cV (1)V (t1) ∂t2 [ cV (t2) ] 〉W3 .

(2.20)
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Figure 6. Illustration of Ψ
(3)
L . The solid dot represents the cV insertion, and the circles represent

the two V insertions. The left V is integrated from 1 to 2 , and the right V is integrated from the

position of the left V to 3 .

The integral region of t2 depends on t1. The first line on the right-hand side of (2.20) can

be calculated as follows:

−
∫ 2

1
dt1

∫ 3

t1

dt2〈f ◦ φ(0)cV (1)∂t1 [cV (t1)]V (t2)〉W3

= −
∫ 2

1
dt1∂t1

[∫ 3

t1

dt2〈f ◦ φ(0)cV (1)cV (t1)V (t2)〉W3

]
−

∫ 2

1
dt1〈f ◦ φ(0)cV (1)cV 2(t1)〉W3

= −
∫ 3

2
dt2〈f ◦ φ(0)cV (1)cV (2)V (t2)〉W3−

∫ 2

1
dt1〈f ◦ φ(0)cV (1)cV 2(t1)〉W3

= − 〈φ,Ψ(1) ∗ Ψ
(2)
L 〉 −

∫ 2

1
dt1〈f ◦ φ(0)cV (1)cV 2(t1)〉W3 . (2.21)

The calculation of the second line on the right-hand side of (2.20) is straightforward:

−
∫ 2

1
dt1

∫ 3

t1

dt2〈f ◦ φ(0)cV (1)V (t1)∂t2 [cV (t2)]〉W3

= −
∫ 2

1
dt1〈f ◦ φ(0)cV (1)V (t1)cV (3)〉W3 +

∫ 2

1
dt1〈f ◦ φ(0)cV (1)cV 2(t1)〉W3

= − 〈φ,Ψ
(2)
L ∗ Ψ(1)〉 +

∫ 2

1
dt1〈f ◦ φ(0)cV (1)cV 2(t1)〉W3 .

(2.22)

Note that the two terms with cV 2, which arise from collisions of cV and V , cancel each

other. We have thus reconfirmed that the equation of motion at O(λ3) is satisfied.

This form of Ψ
(3)
L can be generalized to Ψ

(n)
L for any n as follows:

〈φ, Ψ
(n)
L 〉 =

〈
f ◦ φ(0)cV (1)

∫ 2

1

dt1

∫ 3

t1

dt2

∫ 4

t2

dt3 . . .

∫ n

tn−2

dtn−1V (t1)V (t2)V (t3) . . . V (tn−1)
〉

Wn

=
〈
f ◦ φ(0)cV (1)

n−1∏

j=1

∫ j+1

tj−1

dtjV (tj)
〉

Wn

with t0 ≡ 1 .

(2.23)
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Figure 7. Illustration of Ψ
(n)
L . The solid dot represents the cV insertion, and the circles represent

the V insertions. The integration region of tj is from tj−1 to j + 1.

See figure 7. It is straightforward to show that Ψ
(n)
L satisfies the equation of motion:

〈φ, QBΨ
(n)
L 〉

= −
n−1∑

i=1

〈
f ◦ φ(0)cV (1)

i−1∏

j=1

∫ j+1

tj−1

dtjV (tj)

∫ i+1

ti−1

dti∂ti
[cV (ti)]

n−1∏

k=i+1

∫ k+1

tk−1

dtkV (tk)
〉

Wn

= −
n−1∑

i=1

〈
f ◦ φ(0)cV (1)

i−1∏

j=1

∫ j+1

tj−1

dtjV (tj)cV (i + 1)

∫ i+2

i+1

dti+1 . . .

∫ n

tn−2

dtn−1V (ti+1) . . . V (tn−1)
〉

Wn

+
n−1∑

i=2

〈
f ◦ φ(0)cV (1)

i−1∏

j=1

∫ j+1

tj−1

dtjV (tj)cV (ti−1)

∫ i+2

ti−1

dti+1 . . .

∫ n

tn−2

dtn−1V (ti+1) . . . V (tn−1)
〉

Wn

+

n−2∑

i=1

〈
f ◦ φ(0)cV (1)

i−1∏

j=1

∫ j+1

tj−1

dtjV (tj)

∫ i+1

ti−1

dticV (ti)∂ti

[
n−1∏

k=i+1

∫ k+1

tk−1

dtkV (tk)

]〉

Wn

.

(2.24)

By carrying out the differentiation in the last line, we find that the last line precisely

cancels the second line on the right-hand side. The remaining first line on the right-hand

side is a sum of − Ψ(i) ∗ Ψ(n−i) over i. We have thus shown

〈φ , QBΨ
(n)
L 〉 = −

n−1∑

i=1

〈φ ,Ψ(i) ∗ Ψ(n−i) 〉 . (2.25)

It is convenient to introduce the following notation:

V
(n)
L (1, n + 1) ≡

∫ 2

1
dt1

∫ 3

t1

dt2

∫ 4

t2

dt3 . . .

∫ n+1

tn−1

dtn V (t1)V (t2) . . . V (tn) for n ≥ 1 ,

V
(0)
L (1, 1) ≡ 1 .

(2.26)
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The superscript (n) indicates the number of operators and (1, n + 1) indicates the region

where operators are inserted, although this notation is slightly redundant because the

number of operators and the length of the region are correlated for V
(n)
L (1, n + 1). The

solution Ψ
(n)
L can now be compactly written as

〈φ ,Ψ
(n)
L 〉 = 〈 f ◦ φ(0) cV (1) V

(n−1)
L (1, n) 〉Wn . (2.27)

The state ΨL defined by

ΨL =

∞∑

n=1

λn Ψ
(n)
L (2.28)

thus solves the equation of motion to all orders in λ.

2.2 Solutions satisfying the reality condition

The solution ΨL constructed in the previous subsection satisfies the equation of motion,

but it does not satisfy the reality condition on the string field. In this subsection, we

construct a solution satisfying the reality condition from ΨL.

2.2.1 The reality condition

The string field Ψ must have a definite parity under the combination of the Hermitean

conjugation (hc) and the inverse BPZ conjugation (bpz−1) to guarantee that the string

field theory action is real [44]. We define the conjugate A‡ of a string field A by

A‡ ≡ bpz−1 ◦ hc (A) . (2.29)

With this definition, the following relations hold:

(QBA)‡ = − (−1)A QBA‡ , (2.30)

(A ∗ B)‡ = B‡ ∗ A‡ . (2.31)

Here and in what follows a string field in the exponent of (−1) denotes its Grassmann

property: it is 0 mod 2 for a Grassmann-even state and 1 mod 2 for a Grassmann-odd

state. Since the string field Ψ is Grassmann odd, it must be even under the conjugation

Ψ‡ = Ψ in order that QBΨ and Ψ ∗Ψ have the same parity. We will say that a string field

of ghost number one is real when it is even under the conjugation.

The class of states we use in constructing solutions for marginal deformations are made

of wedge states with insertions of cV and V . Let us consider the conjugate of a state in

this class. The wedge state Wα [45] is even under the conjugation W ‡
α = Wα because it

is constructed from the SL(2, R)-invariant vacuum |0〉 satisfying |0〉‡ = |0〉 by acting with

BPZ-even Virasoro generators L−2, L−4, . . . . The first term Ψ(1) in the solution must be

even (Ψ(1))‡ = Ψ(1), as we discussed above. Therefore, the conjugate of Wα ∗ Ψ(1) ∗ Wβ is

Wβ ∗ Ψ(1) ∗ Wα. This means that the operator cV (t) on Wn is mapped to cV (n + 1 − t)

under the conjugation:

cV (t) −→ cV (n + 1 − t) on Wn . (2.32)
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Its derivative ∂t [ cV (t) ] at t = a is then mapped to − ∂t [ cV (t) ] at t = n + 1 − a. Since

∂t [ cV (t) ] is the BRST transformation of V (t), this means that QB · V (a) is mapped to

− QB · V (n + 1 − a) on Wn. It then follows from (2.30) that V (t) is mapped under the

conjugation as follows:

V (t) −→ V (n + 1 − t) on Wn . (2.33)

It is straightforward to generalize the argument to the case with multiple operator inser-

tions. The conjugate of the state made of the wedge state Wn with cV (t1), V (t2), V (t3), . . . ,

V (tm) is therefore the state made of Wn with V (n + 1 − tm), V (n + 1 − tm−1), . . . , V (n +

1 − t2), cV (n + 1 − t1).

The state Ψ
(n)
L with n ≥ 2 does not satisfy the reality condition. Indeed, the operator

V
(n−1)
L (1, n) defined in (2.26) is mapped as

∫ 2

1
dt1

∫ 3

t1

dt2

∫ 4

t2

dt3 . . .

∫ n

tn−2

dtn−1V (t1)V (t2) . . . V (tn−1)

−→
∫ 2

1
dt1

∫ 3

t1

dt2

∫ 4

t2

dt3 . . .

∫ n

tn−2

dtn−1V (n+1−tn−1)V (n+1−tn−2) . . . V (n+1−t1)

=

∫ n

n−1
dt′1

∫ t′1

n−2
dt′2

∫ t′2

n−3
dt′3 . . .

∫ t′n−2

1
dt′n−1V (t′n−1)V (t′n−2) . . . V (t′1) (2.34)

under the conjugation, where t′i = n + 1− ti. We denote the conjugate of Ψ
(n)
L by Ψ

(n)
R . It

is given by

〈φ ,Ψ
(n)
R 〉 = 〈φ , (Ψ

(n)
L )‡ 〉 = 〈 f ◦ φ(0) V

(n−1)
R (1, n) cV (n) 〉Wn , (2.35)

where we defined

V
(n)
R (1, n + 1) ≡

∫ n+1

n
dt1

∫ t1

n−1
dt2

∫ t2

n−2
dt3 . . .

∫ tn−1

1
dtnV (tn)V (tn−1) . . . V (t1) for n ≥ 1 ,

V
(0)
R (1, 1) ≡ 1 . (2.36)

If Ψ satisfies the equation of motion, its conjugate Ψ‡ also satisfies the equation of motion

because

QBΨ‡ + Ψ‡ ∗ Ψ‡ = (QBΨ + Ψ ∗ Ψ)‡ = 0 . (2.37)

Therefore, ΨR defined by

ΨR =
∞∑

n=1

λn Ψ
(n)
R (2.38)

satisfies the equation of motion.

2.2.2 Gauge transformation

We have found two solutions ΨL and ΨR, and we expect that they are related by a gauge

transformation generated by some gauge parameter U :

ΨR = U−1 ∗ ΨL ∗ U + U−1 ∗ QBU . (2.39)
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For a physical gauge transformation which relates two string fields satisfying the reality

condition, the gauge parameter U must satisfy the unitarity relation U ‡ = U−1. As we will

see later, the gauge parameter U that relates ΨL and ΨR is even under the conjugation:

U ‡ = U . The component fields of ΨL and ΨR which do not satisfy the reality condition

are thus related through the component fields of U which also violate the reality condition

on the gauge parameter.

Let us now construct U which relates ΨL and ΨR. It is convenient to rewrite the

equation (2.39) as follows:

QBU = U ∗ ΨR − ΨL ∗ U . (2.40)

We can expand U as

U =
∞∑

n=0

λn U (n) with U (0) = 1 , (2.41)

and we solve the equation perturbatively in λ. We can choose

U (1) = 0 (2.42)

because Ψ
(1)
L = Ψ

(1)
R and therefore QBU (1) = 0. The equation for U (2) is

〈φ,QB U (2) 〉 = 〈φ,Ψ
(2)
R 〉 − 〈φ,Ψ

(2)
L 〉 = 〈 f ◦ φ(0) [V (1, 2) cV (2) − cV (1)V (1, 2) ] 〉W2 .

(2.43)

This can be easily solved using the formula (2.16), and a solution is

〈φ,U (2) 〉 =
1

2
〈 f ◦ φ(0) (V (1, 2))2 〉W2 . (2.44)

We can construct U (n) at higher orders recursively in this way. However, we can infer U (n)

from the structure of (2.40). If we assume that U can be written without using c ghosts,

the only c ghost is inserted at t = n in the O(λn) term of 〈φ,U ∗ ΨR 〉 when represented

on Wn and at t = 1 on Wn in the O(λn) term of 〈φ,ΨL ∗ U 〉. This motivates us to make

the following ansatz:

〈φ,U (n) 〉 ∝ 〈 f ◦ φ(0)V (n)(1, n) 〉Wn , (2.45)

where

V (n)(a, b) ≡ 1

n!
(V (a, b))n for n ≥ 1 , V (0)(a, b) ≡ 1 . (2.46)

We in fact show that the gauge transformation U in (2.39) is given by

〈φ ,U (n) 〉 = 〈 f ◦ φ(0) V (n)(1, n) 〉Wn . (2.47)

See figure 8. The BRST transformation of U (n) given in (2.47) is

〈φ,QBU (n) 〉 =
〈
f ◦ φ(0)

(
V (n−1)(1, n) cV (n) − cV (1)V (n−1)(1, n)

) 〉
Wn

, (2.48)

where we used (2.16). For the special case of n = 1, the terms on the right-hand side

cancel, which is consistent because U (1) = 0. The O(λn) term of U ∗ΨR − ΨL ∗U in (2.40)
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1 +
λ2

2! +
λ3

3! + . . .

Figure 8. Illustration of the expansion U = 1 + λ2 U (2) + λ3 U (3) + O(λ4).

is given by
n∑

m=1

〈 f ◦ φ(0) V (n−m)(1, n − m)V
(m−1)
R (n − m + 1, n) cV (n) 〉Wn

−
n∑

m=1

〈 f ◦ φ(0) cV (1)V
(m−1)
L (1,m)V (n−m)(m + 1, n) 〉Wn .

(2.49)

The proof of (2.40) for U given in (2.47) thus reduces to showing that

〈 f ◦φ(0) cV (1)V (n−1)(1, n) 〉Wn =

n∑

m=1

〈 f ◦φ(0) cV (1)V
(m−1)
L (1,m)V (n−m)(m+1, n) 〉Wn

(2.50)

and

〈f◦φ(0)V (n−1)(1, n)cV (n)〉Wn =

n∑

m=1

〈f◦φ(0)V (n−m)(1, n−m)V
(m−1)
R (n−m+1, n)cV (n)〉Wn .

(2.51)

Since the second equation follows from the first one by the conjugation, it is sufficient to

show (2.50). The operator V (n−1)(1, n) on the left-hand side can be written in a path-

ordered form as follows:

V (n−1)(1, n) =

∫ n

1
dt1

∫ n

t1

dt2 . . .

∫ n

tn−2

dtn−1 V (t1) . . . V (tn−1) . (2.52)

We now decompose the integration region 1 ≤ t1 ≤ t2 ≤ . . . ≤ tn−1 ≤ n in the following

way:

t1 ≥ 2 ,

t1 ≤ 2 , t2 ≥ 3 ,

t1 ≤ 2 , t2 ≤ 3 , t3 ≥ 4 ,

...

t1 ≤ 2 , t2 ≤ 3 , . . . , tm−1 ≤ m , tm ≥ m + 1 ,

...

t1 ≤ 2 , t2 ≤ 3 , t3 ≤ 4 , . . . . . . . . . , tn−2 ≤ n − 1 , tn−1 ≥ n ,

t1 ≤ 2 , t2 ≤ 3 , t3 ≤ 4 , . . . . . . . . . , tn−2 ≤ n − 1 , tn−1 ≤ n .

(2.53)

– 17 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
1

This decomposition of the integration region precisely matches the right-hand side of (2.50).

For example, the fourth line of (2.53) corresponds to the integration region for the prod-

uct of the operators V
(m−1)
L (1,m)V (n−m)(m + 1, n). Furthermore, the fifth line vanishes

because of the vanishing integration range n ≤ tn−1 ≤ n. This is consistent with the right-

hand side of (2.50) because V (1)(n, n) = 0. The last line is nonvanishing and corresponds to

V
(n−1)
L (1, n)V (0)(n + 1, n) = V

(n−1)
L (1, n), where we used V (0)(a, b) ≡ 1. We conclude that

V (n−1)(1, n) =

n∑

m=1

V
(m−1)
L (1,m)V (n−m)(m + 1, n) , (2.54)

and we have thus shown (2.50). This completes the proof that U is the gauge transforma-

tion that relates ΨL and ΨR.

2.2.3 Construction of a real solution

The state U takes the form

U = 1 +

∞∑

n=2

λn U (n) , (2.55)

and U (n) is even under the conjugation: (U (n))‡ = U (n). If a state X is even under the

conjugation, then ln(1 + X) defined by

ln(1 + X) ≡
∞∑

n=1

(−1)n+1

n
X ∗ X ∗ . . . ∗ X︸ ︷︷ ︸

n

(2.56)

is also even. If a state Y is even, then exp (aY ) with real a defined by

exp (aY ) ≡ 1 +

∞∑

n=1

an

n!
Y ∗ Y ∗ . . . ∗ Y︸ ︷︷ ︸

n

(2.57)

is also even. Therefore, (1 + X)−1,
√

1 + X and 1/
√

1 + X defined by

(1 + X)−1 ≡ exp [− ln(1 + X) ] = 1 +
∞∑

n=1

(−1)n X ∗ X ∗ . . . ∗ X︸ ︷︷ ︸
n

,

√
1 + X ≡ exp

[
1

2
ln(1 + X)

]
,

1√
1 + X

≡ exp

[
−1

2
ln(1 + X)

] (2.58)

are all even if X‡ = X. We define U−1,
√

U , and 1/
√

U in this way, which are well defined

to all orders in λ and are even under the conjugation.

We can now construct a real solution Ψ from ΨL as follows:

Ψ ≡ 1√
U

∗ ΨL ∗
√

U +
1√
U

∗ QB

√
U

=
√

U ∗ ΨR ∗ 1√
U

+
√

U ∗ QB
1√
U

=
1

2

[
1√
U

∗ ΨL ∗
√

U +
√

U ∗ ΨR ∗ 1√
U

+
1√
U

∗ QB

√
U − QB

√
U ∗ 1√

U

]
.

(2.59)
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The second expression is obtained from the first one using QBU = U ∗ ΨR − ΨL ∗ U , and

Ψ manifestly satisfies the reality condition in the third expression because of the relations

Ψ‡
L = ΨR, (

√
U )‡ =

√
U , (1/

√
U )‡ = 1/

√
U , and (QB

√
U )‡ = − QB

√
U . The state Ψ

also satisfies the equation of motion because it is obtained from the solution ΨL by the

gauge transformation generated by
√

U .

We have successfully constructed real analytic solutions for marginal deformations with

regular operator products. To summarize, our solution takes the form

Ψ =
1√
U

∗ ΨL ∗
√

U +
1√
U

∗ QB

√
U , (2.60)

where ΨL and U are defined by

ΨL =

∞∑

n=1

λn Ψ
(n)
L ,

〈φ ,Ψ
(n)
L 〉 = 〈 f ◦ φ(0) cV (1) V

(n−1)
L (1, n) 〉Wn

=

∫ 2

1
dt1

∫ 3

t1

dt2 . . .

∫ n

tn−2

dtn−1 〈 f ◦ φ(0) cV (1) V (t1)V (t2) . . . V (tn−1) 〉Wn ,

U = 1 +
∞∑

n=2

λn U (n) ,

〈φ ,U (n) 〉 = 〈 f ◦ φ(0)V (n)(1, n) 〉Wn

=
1

n!

∫ n

1
dt1

∫ n

1
dt2 . . .

∫ n

1
dtn 〈 f ◦ φ(0)V (t1)V (t2) . . . V (tn) 〉Wn .

(2.61)

2.3 Generalization of wedge states

In the previous subsection, we found the identity (2.54). It is simply a consequence of the

decomposition of the integral region (2.53). The identity (2.54) can be generalized in the

following way. We define V
(n)
L,α(1, n + α) for α ≥ 0 by

V
(n)
L,α(1, n + α) ≡

∫ 1+α

1
dt1

∫ 2+α

t1

dt2

∫ 3+α

t2

dt3 . . .

∫ n+α

tn−1

dtnV (t1)V (t2) . . . V (tn) for n ≥ 1 ,

V
(0)
L,α(1, α) ≡ 1 .

(2.62)

This reduces to V
(n)
L (1, n + 1) defined in (2.26) when α = 1. We then find that

V (n)(1, n + α + β) =

n∑

m=0

V
(m)
L,α (1,m + α)V (n−m)(m + α + 1, n + α + β) (2.63)

for any non-negative real numbers α and β. This identity reduces to (2.54) when α = 1,

β = 0. This generalized identity can be shown, as before, by decomposing the path-ordered
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integration region 1 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ n + α + β of V (n)(1, n + α + β) in the following

way:

t1 ≥ 1 + α ,

t1 ≤ 1 + α , t2 ≥ 2 + α ,

t1 ≤ 1 + α , t2 ≤ 2 + α , t3 ≥ 3 + α ,

...

t1 ≤ 1 + α , t2 ≤ 2 + α , . . . , tm ≤ m + α , tm+1 ≥ m + 1 + α ,

...

t1 ≤ 1 + α , t2 ≤ 2 + α , t3 ≤ 3 + α , . . . . . . . . . , tn−1 ≤ n − 1 + α , tn ≥ n + α ,

t1 ≤ 1 + α , t2 ≤ 2 + α , t3 ≤ 3 + α , . . . . . . . . . , tn−1 ≤ n − 1 + α , tn ≤ n + α .

(2.64)

This identity can be promoted to a relation of string fields. We define Uα and UL,α with

α ≥ 0 by

Uα ≡
∞∑

n=0

λn U (n)
α , UL,α ≡

∞∑

n=0

λn U
(n)
L,α , (2.65)

where

〈φ ,U (n)
α 〉 = 〈 f ◦ φ(0) V (n)(1, n + α) 〉Wn+α

for n + α > 0 , U
(0)
0 = 1 ,

〈φ ,U
(n)
L,α 〉 = 〈 f ◦ φ(0) V

(n)
L,α(1, n + α) 〉Wn+α

for n + α > 0 , U
(0)
L,0 = 1 .

(2.66)

The gauge parameter U in the previous subsection is thus

U = U0 , (2.67)

and the solution ΨL in (2.27) is UL,1 with an extra insertion of λ cV (1). It then follows

from (2.63) that

Uα+β = UL,α ∗ Uβ . (2.68)

When β = 0, we have

Uα = UL,α ∗ U , (2.69)

where we have used U0 = U . As we discussed in the previous subsection, the inverse of U

is well defined to all orders in λ. We thus find that

UL,α = Uα ∗ U−1 . (2.70)

It follows from this and (2.68) that

Uα+β = Uα ∗ U−1 ∗ Uβ . (2.71)

The state Uα is Wα +O(λ) for α > 0, where Wα is the well-known wedge state defined by

〈φ ,Wα 〉 = 〈 f ◦ φ(0) 〉Wα . (2.72)

– 20 –



J
H
E
P
1
1
(
2
0
0
9
)
0
4
1

λ +λ
2 +

λ3

2! + . . .

Figure 9. Illustration of AL expanded in λ.

The relation (2.71) for positive α and β thus reduces to the famous relation Wα+β =

Wα ∗Wβ when λ = 0, and the state Uα can be thought of as a generalization of the wedge

state Wα. When α is a positive integer, Uα can be written in terms of U1 and U−1:

U2 = U1 ∗ U−1 ∗ U1 ,

U3 = U1 ∗ U−1 ∗ U1 ∗ U−1 ∗ U1 ,

U4 = U1 ∗ U−1 ∗ U1 ∗ U−1 ∗ U1 ∗ U−1 ∗ U1 ,

...

(2.73)

This structure indicates a modification of the star product for finite λ defined by

A ⋆ B ≡ A ∗ U−1 ∗ B , (2.74)

and the relation (2.71) can be written as

Uα+β = Uα ⋆ Uβ . (2.75)

On a technical level, the relation (2.71) will play an important role in the next section for

the construction of solutions associated with general marginal deformations. On a more

conceptual level, we will see in section 5 that the modified star product (2.74) naturally

appears in the string field theory action expanded around a deformed background.

3 Marginal deformations with singular operator products

3.1 Another form of the solution with regular operator products

In the process of constructing a real solution from ΨL in the previous section, we proved

that

QB U = U ∗ ΨR − ΨL ∗ U . (3.1)

As we have seen in (2.48), the BRST transformation of U can be decomposed into two

pieces:

QB U = AR − AL , (3.2)

where AL and AR are given by
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〈φ ,AL 〉 =

∞∑

n=1

λn 〈 f ◦ φ(0) cV (1)V (n−1)(1, n) 〉Wn ,

〈φ ,AR 〉 =

∞∑

n=1

λn 〈 f ◦ φ(0)V (n−1)(1, n) cV (n) 〉Wn .

(3.3)

See figure 9. At O(λn) with n ≥ 2, AL and AR account for the term with cV (1) and the

term with cV (n) in QBU (n), respectively. At O(λ), QB U vanishes because U (1) = 0, but

we have chosen AL and AR at O(λ) to be λΨ(1) for later convenience.

In the proof of (3.1), we have actually shown that

AL = ΨL ∗ U , AR = U ∗ ΨR . (3.4)

As we discussed in the previous section, the inverse of U is well defined to all orders in λ.

We thus obtain new expressions for ΨL and ΨR:

ΨL = AL ∗ U−1 , ΨR = U−1 ∗ AR . (3.5)

We have shown that ΨL with Ψ
(n)
L in the form of (2.27) satisfies the equation of motion.

Let us now see how ΨL in the new form satisfies the equation of motion. The BRST

transformation of ΨL can be calculated as follows:

QBΨL = QB (AL ∗ U−1)

= (QBAL) ∗ U−1 + AL ∗ U−1 ∗ (QBU) ∗ U−1

= (QBAL) ∗ U−1 + AL ∗ U−1 ∗ (AR − AL) ∗ U−1

= (QBAL + AL ∗ U−1 ∗ AR) ∗ U−1 − AL ∗ U−1 ∗ AL ∗ U−1

= (QBAL + AL ∗ U−1 ∗ AR) ∗ U−1 − ΨL ∗ ΨL .

(3.6)

Therefore, the equation of motion is satisfied if

− QBAL = AL ∗ U−1 ∗ AR . (3.7)

The left-hand side of the equation can be calculated as follows:

− 〈φ ,QBAL 〉 =

∞∑

n=2

λn 〈 f ◦ φ(0) cV (1)V (n−2)(1, n) cV (n) 〉Wn . (3.8)

Let us next consider the structure of the state AL∗U−1∗AR on the right-hand side of (3.7).

The O(λn) terms of AL and AR are made of the wedge state Wn with operator insertions.

The inverse U−1 can be written as a linear combination of string products made of λn U (n),

and their O(λn) terms are again made of the wedge state Wn with operator insertions. It

thus follows that all of the O(λn) terms of AL ∗ U−1 ∗ AR are made of Wn with operator

insertions. This is consistent with the structure of (3.8). Furthermore, the insertions of

λ cV on the surface Wn are always λ cV (1) and λ cV (n), which is again consistent with

the structure of (3.8). Finally, let us consider the structure of integrated vertex operators.

The state −QBAL takes the form of the state U2 defined in (2.65) with insertions of λ cV .
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Similarly, AL and AR take the form of U1 with an insertion of λ cV . The equation (3.7)

thus follows from (2.71) with α = β = 1:

U2 = U1 ∗ U−1 ∗ U1 . (3.9)

We conclude that ΨL of the form given in (3.5) satisfies the equation of motion.

3.2 Generalization to the case with singular operator products

The form ΨL = AL∗U−1 for the solution can be generalized to the case where operator prod-

ucts of the marginal operator are singular. As we discussed in the introduction, we denote

the properly renormalized operator implementing the change of the boundary condition

between the points a and b by [ eλV (a,b) ]r, which is given in the form of an expansion in λ:

[ eλV (a,b) ]r =
∞∑

n=0

λn

n!
[ (V (a, b))n ]r =

∞∑

n=0

λn [V (n)(a, b) ]r . (3.10)

We define U in the general case by

U ≡
∞∑

n=0

λn U (n) , (3.11)

where

〈φ ,U (n) 〉 = 〈 f ◦ φ(0) [V (n)(1, n) ]r 〉Wn . (3.12)

As we discussed in the introduction, we assume that the BRST transformation of

[ eλV (a,b) ]r for any exactly marginal deformation takes the form

QB · [ eλV (a,b) ]r = [ eλV (a,b) OR(b) ]r − [OL(a) eλV (a,b) ]r , (3.13)

where OL and OR are λ-dependent, Grassmann-odd local operators. The operators OL

and OR are closely related and mapped to each other under the conjugation discussed

in section 2.2.1 when the reflection assumption (VI) is satisfied. We will discuss the relation

between OL and OR in more detail in section 3.4, but it is relevant only when generating

a real solution from ΨL and we do not need to assume any relation between OL and OR

in the construction of the solution ΨL. In the case of marginal deformations with regular

operator products, we see from (2.16) that

QB · eλV (a,b) = λ
(

eλV (a,b) cV (b) − cV (a) eλV (a,b)
)

(3.14)

and identify

Oregular
L = Oregular

R = λ cV . (3.15)

In the case of marginal deformations with singular operator products, there can be correc-

tions to OL and OR, which are determined from the BRST transformation of [V (n)(a, b) ]r
in the form

QB · [V (n)(a, b) ]r =

n∑

r=1

[V (n−r)(a, b)O
(r)
R (b) ]r −

n∑

l=1

[O
(l)
L (a)V (n−l)(a, b) ]r , (3.16)
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1
2! + +

Figure 10. Illustration of A
(3)
L .

where OL and OR are expanded as follows:

OL =

∞∑

n=1

λn O
(n)
L , OR =

∞∑

n=1

λn O
(n)
R . (3.17)

The operators O
(1)
L and O

(1)
R are determined from the BRST transformation of [V (1)(a, b) ]r .

Since [V (1)(a, b) ]r does not require any renormalization, we find

QB · [V (1)(a, b) ]r = QB · V (a, b) = cV (b) − cV (a) (3.18)

for any dimension-one primary field V . Thus the operators O
(1)
L and O

(1)
R are determined

to be

O
(1)
L = O

(1)
R = cV (3.19)

for any marginal deformation. Similarly, the operators O
(n)
L and O

(n)
R with n ≥ 2 are

determined from the BRST transformation of [V (n)(a, b) ]r with n ≥ 2 , but we do not

need any specific information on these operators in the construction of solutions. The

BRST transformation of U is then given by

QB U = AR − AL , (3.20)

where

AL ≡
∞∑

n=1

λn A
(n)
L , AR ≡

∞∑

n=1

λn A
(n)
R , (3.21)

with

〈φ ,A
(n)
L 〉 =

n∑

l=1

〈 f ◦ φ(0) [O
(l)
L (1)V (n−l)(1, n) ]r 〉Wn ,

〈φ ,A
(n)
R 〉 =

n∑

r=1

〈 f ◦ φ(0) [V (n−r)(1, n)O
(r)
R (n) ]r 〉Wn .

(3.22)

See figure 10. We have defined A
(1)
L and A

(1)
R to be Ψ(1) as in the regular case.

We now define ΨL by

ΨL ≡ AL ∗ U−1 , (3.23)
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and we conclude from the calculation (3.6), where we only used the relation QBU =

AR − AL, that ΨL satisfies the equation of motion if

− QBAL = AL ∗ U−1 ∗ AR . (3.24)

So far we have only used the assumption (I) on the BRST transformation of [ eλV (a,b) ]r. We

show in the next subsection that the equation (3.24) holds when the assumptions (II)–(V)

stated in the introduction are satisfied.

3.3 Proof that the equation of motion is satisfied

Let us first examine the left-hand side of (3.24). From the assumption (II) on the BRST

transformation of [OL(a) eλV (a,b) ]r, it is given by

− 〈φ ,QBA
(n)
L 〉 =

∑

l+r≤n

〈 f ◦ φ(0) [O
(l)
L (1)V (n−l−r)(1, n)O

(r)
R (n) ]r 〉Wn . (3.25)

If we define Uα for α ≥ 0 in the singular case by

Uα ≡
∞∑

n=0

λn U (n)
α (3.26)

with

〈φ ,U (n)
α 〉 = 〈 f ◦ φ(0) [V (n)(1, n + α) ]r 〉Wn+α

for n + α > 0 , U
(0)
0 ≡ 1 , (3.27)

then −QBAL can be constructed from Ul+r by inserting λl O
(l)
L and λr O

(r)
R and by summing

over l and r. We schematically write the state in the following way:

− QBAL ∼
∑

l, r

(
Ul+r with λl O

(l)
L and λr O

(r)
R

)
. (3.28)

The state AL on the right-hand side of (3.24) can be constructed from Ul by inserting λl O
(l)
L

and by summing over l. Similarly, the state AR can be constructed from Ur by inserting

λr O
(r)
R and by summing over r. Therefore, the state AL ∗ U−1 ∗ AR can be schematically

expressed as follows:

AL ∗ U−1 ∗ AR ∼
∑

l

(
Ul with λl O

(l)
L

)
∗ U−1 ∗

∑

r

(
Ur with λr O

(r)
R

)

∼
∑

l, r

(
Ul ∗ U−1 ∗ Ur with λl O

(l)
L and λr O

(r)
R

)
.

(3.29)

The equation − QBAL = AL ∗ U−1 ∗ AR thus follows if the relation

Ul+r = Ul ∗ U−1 ∗ Ur (3.30)

with additional operator insertions of O
(l)
L and O

(r)
R holds for the singular case. Motivated

by this observation, we first show that the relation Ul+r = Ul ∗ U−1 ∗ Ur holds for the

singular case if the assumptions of replacement (III), factorization (IV), and locality (V)
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are satisfied. It is then straightforward to generalize the proof by taking into account the

insertions of O
(l)
L and O

(r)
R and show the equation (3.24).

We now demonstrate how the equation (3.30) holds using a concrete example and then

explain how the proof generalizes. Let us consider the equation U2 = U1 ∗ U−1 ∗ U1 at

O(λ2). Using the expansion U−1 = 1 − λ2 U (2) + O(λ3), it can be written as follows:

U
(2)
2 = U

(0)
1 ∗ U

(2)
1 + U

(1)
1 ∗ U

(1)
1 + U

(2)
1 ∗ U

(0)
1 − U

(0)
1 ∗ U (2) ∗ U

(0)
1 . (3.31)

All the terms are made of the wedge state W4 with operator insertions. In the regular case,

the equation was a consequence of the following relation of the operator insertions on W4:

(V (1, 4))2 = (V (2, 4))2 + 2V (1, 2)V (3, 4) + (V (1, 3))2 − (V (2, 3))2 . (3.32)

In the singular case, we need to show

[ (V (1, 4))2 ]r = [ (V (2, 4))2 ]r + 2 [V (1, 2) ]r [V (3, 4) ]r + [ (V (1, 3))2 ]r − [ (V (2, 3))2 ]r .

(3.33)

Note that we have implicitly used the locality assumption (V). The operators [ (V (2, 4))2 ]r
and [ (V (1, 3))2 ]r on the right-hand side were originally defined on W3 and [ (V (2, 3))2 ]r
was defined on W2. They are now inserted on W4 in the same forms because of the

assumption (V). We next use the factorization assumption (IV) of the following form:

[ eλ1V (1,2) eλ2V (3,4) ]r = [ eλ1V (1,2) ]r [ eλ2V (3,4) ]r . (3.34)

The relation from this equation at O(λ1 λ2) is

[V (1, 2)V (3, 4) ]r = [V (1, 2) ]r [V (3, 4) ]r . (3.35)

Thus the right-hand side of (3.33) can be written as

[ (V (2, 4))2 ]r + 2 [V (1, 2) ]r [V (3, 4) ]r + [ (V (1, 3))2 ]r − [ (V (2, 3))2 ]r

= [ (V (2, 4))2 ]r + 2 [V (1, 2)V (3, 4) ]r + [ (V (1, 3))2 ]r − [ (V (2, 3))2 ]r .
(3.36)

We then use the assumption (III) of replacement in the final step. It follows from the

assumption (III) that

[ eλV (a,c) ]r = [ eλV (a,b) eλV (b,c) ]r (3.37)

for a < b < c. At O(λ2), we obtain the following formula:

[ (V (a, c))2 ]r = [ (V (a, b))2 ]r + 2 [V (a, b)V (b, c) ]r + [ (V (b, c))2 ]r . (3.38)

We thus find

[ (V (2, 4))2 ]r = [ (V (2, 3) + V (3, 4) )2 ]r

= [ (V (2, 3))2 ]r + 2 [V (2, 3)V (3, 4) ]r + [ (V (3, 4))2 ]r ,

[ (V (1, 3))2 ]r = [ (V (1, 2) + V (2, 3) )2 ]r

= [ (V (1, 2))2 ]r + 2 [V (1, 2)V (2, 3) ]r + [ (V (2, 3))2 ]r .

(3.39)
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For the operator [ (V (1, 4))2 ]r on the left-hand side of (3.33), we use the formula (3.38)

recursively and obtain

[ (V (1, 4))2 ]r = [ (V (1, 2) + V (2, 3) + V (3, 4) )2 ]r

= [ (V (1, 2))2 ]r + [ (V (2, 3))2 ]r + [ (V (3, 4))2 ]r

+ 2 [V (1, 2)V (2, 3) ]r + 2 [V (2, 3)V (3, 4) ]r + 2 [V (1, 2)V (3, 4) ]r .

(3.40)

We can explicitly confirm that the equation (3.33) is satisfied. However, the coefficients in

the basis
{

[ (V (1, 2))2 ]r , [ (V (2, 3))2 ]r , [ (V (3, 4))2 ]r ,

[V (1, 2)V (2, 3) ]r , [V (2, 3)V (3, 4) ]r , [V (1, 2)V (3, 4) ]r
} (3.41)

are guaranteed to match on both sides of (3.33) because they are the same as those in the

regular case where the corresponding identity (3.32) has been shown.

This proof can be generalized to Ul+r = Ul ∗U−1 ∗Ur at O(λn) for any positive integers

l, r, and n. The state U
(n)
l+r can be expressed in terms of [V (n)(1, l + r + n) ]r on Wl+r+n.

Because of the locality assumption (V), the terms of Ul ∗ U−1 ∗ Ur at O(λn) can also be

expressed in terms of products of the form
∏

j

[V (kj)(aj , bj) ]r (3.42)

on Wl+r+n, where positive integers kj , aj, and bj satisfy 1 ≤ aj < bj ≤ l + r + n, bj < aj+1

and
∑

j kj = n. Using the factorization assumption (IV), the products can be written as




∏

j

V (kj)(aj , bj)




r

(3.43)

on Wl+r+n. Finally, we use the replacement assumption (III) to expand both sides of the

equation Ul+r = Ul ∗ U−1 ∗ Ur in the basis

{[
l+r+n−1∏

i=1

V (ℓi)(i, i + 1)

]

r

}
, (3.44)

where ℓi’s are non-negative integers with
∑l+r+n−1

i=1 ℓi = n. The coefficients in the basis

are guaranteed to match on both sides of Ul+r = Ul ∗U−1 ∗Ur because the equation holds

in the regular case. This completes the proof of Ul+r = Ul ∗ U−1 ∗ Ur in the singular case

to all orders in λ.

The proof of −QBAL = AL∗U−1∗AR is essentially parallel using the assumptions (III)

and (IV) of replacement and factorization with additional insertions of OL and OR. We

provide the details of the proof in appendix A. We thus conclude that ΨL given by

ΨL = AL ∗ U−1 (3.45)

solves the equation of motion for any exactly marginal deformations satisfying the assump-

tions (I)–(V).
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3.4 Construction of a real solution

It is straightforward to construct a real solution Ψ from ΨL as we did in section 2.2 for

marginal deformations with regular operator products. The state U satisfies U ‡ = U under

the assumption (VI) of reflection. It then follows from (2.30) that (QBU)‡ = − QBU and

thus (AR − AL)‡ = AL − AR. From this we conclude that the local operators OL and OR

are mapped under the conjugation discussed in section 2.2.1 as follows:

OL(t) −→ OR(n + 1 − t) , OR(t) −→ OL(n + 1 − t) on Wn . (3.46)

We thus find

A‡
L = AR , A‡

R = AL . (3.47)

In the case of marginal deformations with regular operator products, OL and OR are both

λ cV and are indeed mapped as (3.46).

We define ΨR by

ΨR ≡ U−1 ∗ AR . (3.48)

As in the regular case, the state ΨR is the conjugate of ΨL:

ΨR = Ψ‡
L . (3.49)

It satisfies the equation of motion and obeys the relation QBU = U ∗ ΨR − ΨL ∗ U . We

conclude that Ψ given by

Ψ =
1√
U

∗ ΨL ∗
√

U +
1√
U

∗ QB

√
U

=
√

U ∗ ΨR ∗ 1√
U

+
√

U ∗ QB
1√
U

=
1

2

[
1√
U

∗ ΨL ∗
√

U +
√

U ∗ ΨR ∗ 1√
U

+
1√
U

∗ QB

√
U − QB

√
U ∗ 1√

U

]
(3.50)

is real and satisfies the equation of motion. The solution Ψ can also be expressed in terms of

AL and AR in the following way, which might be more convenient for an explicit expansion

in λ:

Ψ =
1√
U

∗ AL ∗ 1√
U

+
1√
U

∗ QB

√
U

=
1√
U

∗ AR ∗ 1√
U

+
√

U ∗ QB
1√
U

=
1

2

[
1√
U

∗ (AL + AR) ∗ 1√
U

+
1√
U

∗ QB

√
U − QB

√
U ∗ 1√

U

]
.

(3.51)

4 Explicit construction

We have separated the construction of solutions for marginal deformations in open string

field theory into two steps. In the previous section, we have presented the general con-

struction of solutions in open string field theory from the operator [ eλV (a,b) ]r. The second
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step is then to construct such properly renormalized operators satisfying the assumptions

stated in the introduction for concrete examples of exactly marginal deformations. This

is a problem in the boundary CFT and independent of string field theory. In this section,

we carry out the second step for a class of marginal deformations with singular operator

products by constructing [ eλV (a,b) ]r explicitly.

4.1 A class of marginal deformations with singular operator products

The dependence of the two-point function 〈V (t1)V (t2) 〉 on t1 and t2 for a dimension-one

primary field V is completely fixed by conformal symmetry. When the singular part of the

operator product expansion (OPE) of V with itself is given by

V (t)V (0) ∼ 1

t2
, (4.1)

the operator product V (t1)V (t2) can be made finite in the limit t1 → t2 by subtracting

〈V (t1)V (t2) 〉 from it.2 We define ◦
◦ V (t1)V (t2)

◦
◦ for t1 6= t2 by

◦
◦ V (t1)V (t2)

◦
◦ ≡ V (t1)V (t2) − G(t1, t2) , (4.2)

where

G(t1, t2) ≡ 〈V (t1)V (t2) 〉 . (4.3)

Note that the correlation function 〈V (t1)V (t2) 〉 depends on the Riemann surface where

the boundary CFT is defined, and thus the definition of ◦
◦ V (t1)V (t2)

◦
◦ also depends on the

Riemann surface.

The OPE of V with itself, however, can have other singular terms. For example, the

singular part of the OPE can be

V (t)V (0) ∼ 1

t2
+

1

t
Ṽ (0) (4.4)

with some dimension-one primary field Ṽ , which can be proportional to V itself. The

operator ◦
◦ V (t1)V (t2)

◦
◦ is not finite if the single-pole term with Ṽ is nonvanishing. We will

discuss the case with the OPE (4.4) in more detail in section 4.4.

The operator ◦
◦ V (t1)V (t2)

◦
◦ coincides with the ordinary normal-ordered product

: V (t1)V (t2) : and is thus manifestly finite for V (t) = i ∂tX
µ(t)/

√
2α′, where Xµ is a space-

like coordinate along the D-brane. However, it is in general different from : V (t1)V (t2) :

when V is a composite operator. For example, when V (t) is given by

V (t) =
√

2 : cos

(
Xµ(t)√

α′

)
: , (4.5)

we can write ◦
◦ V (t1)V (t2)

◦
◦ as

◦
◦V (t1)V (t2)

◦
◦=G(t1, t2)

−1: cos

(
Xµ(t1)+Xµ(t2)√

α′

)
:+G(t1, t2)

[
: cos

(
Xµ(t1)−Xµ(t2)√

α′

)
:−1

]
,

(4.6)

2 When the double-pole term 1/t2 in the OPE V (t) V (0) is nonvanishing, we normalize V (t) such that

the coefficient of the double-pole term is unity. If the state Ψ(1) using V with this normalization is odd

instead of even under the conjugation discussed in section 2.2.1, we set λ = i λ̃ and take λ̃ to be real when

constructing the real solution Ψ in section 3.4.
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which is not the same as the normal-ordered product:

◦
◦ V (t1)V (t2)

◦
◦ 6= : V (t1)V (t2) : = 2 : cos

(
Xµ(t1)√

α′

)
cos

(
Xµ(t2)√

α′

)
: . (4.7)

We recursively define ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦ for arbitrary n with ti 6= tj as follows:

◦
◦ V (t1)

◦
◦ ≡ V (t1) ,

◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦ ≡ ◦
◦ V (t1)V (t2) . . . V (tn−1)

◦
◦ V (tn)

−
n−1∑

i=1

G(ti, tn) ◦
◦ V (t1)V (t2) . . . V (ti−1)V (ti+1) . . . V (tn−1)

◦
◦

(4.8)

for n > 1 and ti 6= tj. This can be formally written in the following form:

◦
◦

∏

i

V (ti)
◦
◦ = exp

(
−1

2

∫
dt1dt2 G(t1, t2)

δ

δV (t1)

δ

δV (t2)

)∏

i

V (ti) for ti 6= tj .

(4.9)

For V (t) = i ∂tX
µ(t)/

√
2α′, the operator product ◦

◦ V (t1)V (t2) . . . V (tn) ◦
◦ again coincides

with : V (t1)V (t2) . . . V (tn) : and is regular. In general, however, ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦

with n ≥ 3 can be singular, even if it is finite in the limit ti → tj for any pair of i and j,

when more than two operators simultaneously collide. In this section, we consider a class

of marginal operators V which satisfy the following finiteness condition.

The finiteness condition. The limit

lim
t→t′

◦
◦ V (t)V (t′)n ◦

◦ (4.10)

is finite for any positive integer n.

We explicitly construct [eλV (a,b)]r satisfying the assumptions stated in the introduction for

this class of marginal operators.

4.2 Examples

Let us give some examples of such marginal deformations for D-branes in flat spacetime

with Neumann or Dirichlet boundary conditions. As we have already mentioned, the

finiteness condition (4.10) is satisfied for

V (t) =
i√
2α′

∂tX
µ(t) , (4.11)

where Xµ is a space-like direction along the D-brane. The direction Xµ can be noncompact

or can be compactified on a circle with any radius. Similarly, the operator

V (t) =
1√
2α′

∂tX
0(t) (4.12)
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for the time-like direction also satisfies the finiteness condition.3 Both of these deformations

correspond to turning on a constant mode of the gauge field on the D-brane.

The finiteness condition is also satisfied for

V (t) =
1√
2α′

∂⊥Xα(t) , (4.13)

where Xα is a direction transverse to the D-brane and ∂⊥ is the derivative normal to

the boundary. The direction Xα can be noncompact or can be compactified on a cir-

cle with any radius. This deformation corresponds to displacement of the position of

the D-brane in the direction Xα. The condition (4.10) is satisfied because the operator
◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦ again coincides with : V (t1)V (t2) . . . V (tn) : and is regular.

A more nontrivial example of V satisfying (4.10) is

V (t) =
√

2 : cos

(
Xµ(t)√

α′

)
: , (4.14)

where Xµ is again a space-like direction along the D-brane. The direction Xµ can be

noncompact or can be compactified on a circle whose radius is a multiple of the self-dual

radius to be consistent with the periodicity of the cosine potential. This deformation is

known to be exactly marginal [46–49] and interpolates Neumann and Dirichlet boundary

conditions. If we start from a D25-brane and deform the background by this operator, we

obtain a periodic array of D24-branes at some value of the deformation parameter. When

we compactify the Xµ direction on a circle with the self-dual radius, the free boson for the

Xµ direction can be described by a different free boson Y µ because of the SU(2) × SU(2)

symmetry, and the marginal operator V (t) can be written in terms of Y µ as follows:

V (t) =
√

2 : cos

(
Xµ(t)√

α′

)
: =

i√
2α′

∂tY
µ(t) . (4.15)

See, for example, section 3.1 of [2]. Finiteness of ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦ at the self-dual ra-

dius is then a consequence of Wick’s theorem in the description in terms of Y µ. On the other

hand, the finiteness is highly nontrivial in the original description in terms of Xµ. The oper-

ator algebra of boundary operators necessary for the calculation of ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦,

however, does not depend on the compactification radius. Thus ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦

is finite for any radius which is a multiple of the self-dual radius and for the noncompact

case as well.

The operator algebra of boundary operators necessary for the calculation of the oper-

ator product ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦ is the same if we replace Xµ by iX0. Therefore, the

marginal operator

V (t) =
√

2 : cosh

(
X0(t)√

α′

)
: (4.16)

also satisfies the finiteness condition. This deformation has been discussed in detail in the

context of the rolling tachyon [50].

3 We have to set λ = i λ̃ and take λ̃ to be real for this operator when constructing the real solution Ψ.
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All the operators mentioned in this subsection are known to be exactly marginal. In

the remainder of this section, we construct solutions in terms of ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦,

and the construction depends on the explicit form of V only through these operator prod-

ucts. Thus all the marginal deformations discussed in this subsection are covered by our

construction.

4.3 Renormalizing operators

For the class of marginal operators satisfying the finiteness condition (4.10) in section 4.1,

we can construct finite operators ◦
◦(V (a, b))n ◦

◦ for any n using the point-splitting regular-

ization. For n = 2, we construct ◦
◦(V (a, b))2 ◦

◦ as follows:

◦
◦(V (a, b))2 ◦

◦ = lim
ǫ→0

∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2

(
V (t1)V (t2) − G(t1, t2)

)

+ lim
ǫ→0

∫ b

a+ǫ
dt1

∫ t1−ǫ

a
dt2

(
V (t1)V (t2) − G(t1, t2)

)
.

(4.17)

The first line and the second line on the right-hand side are actually identical. We could

have written ◦
◦(V (a, b))2 ◦

◦ using only one of them, but we used both of them so that the

integral region reduces to the product of a ≤ t1 ≤ b and a ≤ t2 ≤ b without any ordering

constraint in the limit ǫ → 0. The construction can be generalized to any n as follows:

◦
◦(V (a, b))n ◦

◦ = lim
ǫ→0

∫

Γ
(n)
ǫ

dt1dt2 . . . dtn
∑

0≤k≤n/2

(−1)k n!

2k k! (n − 2k)!

k∏

i=1

G(ti, ti+k)

n∏

j=2k+1

V (tj) ,

(4.18)

where the integral region Γ
(n)
ǫ is

Γ(n)
ǫ : a ≤ ti ≤ b for i = 1, 2, . . . , n with | ti − tj | ≥ ǫ for i 6= j . (4.19)

The finiteness condition (4.10) guarantees that the limit ǫ → 0 in (4.18) is well defined and

finite for any n. We then define ◦
◦ eλV (a,b) ◦

◦ by its expansion in λ:

◦
◦ eλV (a,b) ◦

◦ ≡
∞∑

n=0

λn

n!
◦
◦(V (a, b))n ◦

◦ . (4.20)

The definition of ◦
◦ eλV (a,b) ◦

◦ depends on the Riemann surface where the boundary CFT

is defined through the propagator G(t1, t2). When we calculate star products of string fields

involving the operators in the expansion (4.20), the operators defined on Wn are embedded

in a surface Wm with m ≥ n, and the operators in the expansion (4.20) are not invariant.

Thus we cannot simply set [ eλV (a,b) ]r ≡ ◦
◦ eλV (a,b) ◦

◦ because the locality assumption (V) on

[ eλV (a,b) ]r is not satisfied.

Let us study the issue more explicitly in a simpler example. The operator ◦
◦ V (a)V (a, b) ◦

◦

is given by

◦
◦ V (a)V (a, b) ◦

◦ = lim
ǫ→0

∫ b

a+ǫ
dt ◦

◦ V (a)V (t) ◦
◦ = lim

ǫ→0

∫ b

a+ǫ
dt

[
V (a)V (t) − G(a, t)

]
. (4.21)
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We denote the propagator G(t1, t2) on Wn by Gn(t1, t2). Its explicit expression is

Gn(t1, t2) ≡ 〈V (t1)V (t2) 〉Wn =
π2

(n + 1)2 sin2
( t2 − t1

n + 1
π
) . (4.22)

The operator ◦
◦ V (a)V (a, b) ◦

◦ defined on Wn is thus

◦
◦ V (a)V (a, b) ◦

◦ = lim
ǫ→0

∫ b

a+ǫ
dt

[
V (a)V (t) − π2

(n + 1)2 sin2
(

t−a
n+1 π

)
]

on Wn . (4.23)

When this operator is embedded in Wm, it should be written using the propagator on Wm

as follows:

lim
ǫ→0

∫ b

a+ǫ
dt

[
V (a)V (t) − π2

(n + 1)2 sin2
(

t−a
n+1 π

)
]

= lim
ǫ→0

∫ b

a+ǫ
dt

[
V (a)V (t) − π2

(m + 1)2 sin2
(

t−a
m+1 π

)
]
−

∫ b

a
dt δG(a, t) ,

(4.24)

where

δG(t1, t2) ≡ Gn(t1, t2) − Gm(t1, t2)

=
π2

(n + 1)2 sin2
( t2 − t1

n + 1
π
) − π2

(m + 1)2 sin2
( t2 − t1

m + 1
π
)

=
(m − n)(2 + m + n)π2

3 (m + 1)2(n + 1)2
+ O((t2 − t1)

2) ,

(4.25)

and δG(t1, t2) is finite in the limit t2 → t1. The operator ◦
◦ V (a)V (a, b) ◦

◦ defined on Wn is

thus rewritten when embedded in Wm as

◦
◦ V (a)V (a, b) ◦

◦ −−−−−−−→
Wn→Wm

◦
◦ V (a)V (a, b) ◦

◦ −
∫ b

a
dt δG(a, t) . (4.26)

The notation

A −−−−−−−→
Wn→Wm

B (4.27)

implies that A = B, but A is written in terms of the propagator on Wn and B is written in

terms of the propagator on Wm. The assumption of locality (V) can be stated using this

notation as

[eλV (a,b)]r −−−−−−−→
Wn→Wm

[eλV (a,b)]r, [OL(a)eλV (a,b)]r −−−−−−−→
Wn→Wm

[OL(a)eλV (a,b)]r .

(4.28)

As can be expected from the fact that O
(1)
L = O

(1)
R = cV in general, we will need to define

the operator [V (a) eλV (a,b) ]r satisfying

[V (a) eλV (a,b) ]r −−−−−−−→
Wn→Wm

[V (a) eλV (a,b) ]r . (4.29)
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The operator ◦
◦ V (a)V (a, b) ◦

◦ does not satisfy

[V (a)V (a, b) ]r −−−−−−−→
Wn→Wm

[V (a)V (a, b) ]r (4.30)

and thus violates (4.29) at O(λ). In order to cancel the extra term in (4.26), we add back a

finite part of the propagator contraction which we subtracted. We define the renormalized

contraction 〈V (a)V (a, b) 〉r by

〈V (a)V (a, b)〉r ≡ lim
ǫ→0

[ ∫ b

a+ǫ
dt G(a, t) − 1

ǫ

]
. (4.31)

Its explicit expression on Wn is

〈V (a)V (a, b) 〉r = − π

n + 1
cot

(
π(b − a)

n + 1

)
on Wn , (4.32)

and it is rewritten when embedded in Wm as

〈V (a)V (a, b) 〉r −−−−−−−→
Wn→Wm

〈V (a)V (a, b) 〉r +

∫ b

a
dt δG(a, t) . (4.33)

This allows us to define our first renormalized operator [V (a)V (a, b) ]r by

[
V (a)V (a, b)

]
r
≡ ◦

◦ V (a)V (a, b) ◦
◦ + 〈V (a)V (a, b) 〉r . (4.34)

Since the extra term in (4.26) is canceled by the extra term in (4.33), the operator

[V (a)V (a, b) ]r is invariant under the embedding from Wn to Wm and thus satisfies (4.30).

In fact, we can write [V (a)V (a, b) ]r in the following form which does not depend on the

propagator:
[
V (a)V (a, b)

]
r

= lim
ǫ→0

[ ∫ b

a+ǫ
dt V (a)V (t) − 1

ǫ

]
. (4.35)

Similarly, we can define the renormalized contraction and the renormalized operator for

V (a, b)V (b) by

〈V (a, b)V (b) 〉r ≡ lim
ǫ→0

[ ∫ b−ǫ

a
dt G(t, b) − 1

ǫ

]
,

[
V (a, b)V (b)

]
r
≡ ◦

◦ V (a, b)V (b) ◦
◦ + 〈V (a, b)V (b) 〉r = lim

ǫ→0

[ ∫ b−ǫ

a
dt V (t)V (b) − 1

ǫ

]
.

(4.36)

The renormalized contraction 〈V (a, b)V (b) 〉r on Wn is

〈V (a, b)V (b) 〉r = − π

n + 1
cot

(
π(b − a)

n + 1

)
on Wn . (4.37)

We use the same strategy to define [ (V (a, b))2 ]r. We define 〈V (a, b)2 〉r by

〈V (a, b)2 〉r ≡ 2 lim
ǫ→0

[ ∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2 G(t1, t2) −

b − a − ǫ

ǫ
− ln ǫ

]
. (4.38)
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Its expression on Wn is

〈V (a, b)2 〉r = ln

(
π2

(n + 1)2 sin2
(

b−a
n+1 π

)
)

= ln Gn(a, b) on Wn . (4.39)

We then define [ (V (a, b))2 ]r by

[
(V (a, b))2

]
r
≡ ◦

◦(V (a, b))2 ◦
◦ + 〈V (a, b)2 〉r . (4.40)

Since ◦
◦(V (a, b))2 ◦

◦ and 〈V (a, b)2 〉r defined on Wn are rewritten when embedded in Wm as

◦
◦(V (a, b))2 ◦

◦ −−−−−−−→
Wn→Wm

◦
◦(V (a, b))2 ◦

◦ − ∆ ,

〈V (a, b)2 〉r −−−−−−−→
Wn→Wm

〈V (a, b)2 〉r + ∆ ,
(4.41)

where

∆ ≡
∫ b

a
dt1

∫ b

a
dt2 δG(t1, t2) , (4.42)

the operator [ (V (a, b))2 ]r is invariant under the embedding from Wn to Wm.

The operator [ eλV (a,b) ]r can also be defined using 〈V (a, b)2 〉r as follows:

[ eλV (a,b) ]r ≡ e
1
2
λ2〈V (a,b)2 〉r ◦

◦ eλV (a,b) ◦
◦ . (4.43)

By replacing Gn in (4.18) on Wn with Gm + δG, we find

◦
◦(V (a, b))k ◦

◦ −−−−−−−→
Wn→Wm

∑

0≤ℓ≤k/2

(−1)ℓ k!

2ℓ (k − 2ℓ)! ℓ!
∆ℓ ◦

◦(V (a, b))k−2ℓ ◦
◦ . (4.44)

It then follows from

◦
◦ eλV (a,b) ◦

◦ −−−−−−−→
Wn→Wm

e−
1
2
λ2∆ ◦

◦ eλV (a,b) ◦
◦ ,

e
1
2
λ2〈V (a,b)2 〉r −−−−−−−→

Wn→Wm

e
1
2
λ2∆ e

1
2
λ2〈V (a,b)2 〉r

(4.45)

that the operator [ eλV (a,b) ]r transforms as

[ eλV (a,b) ]r −−−−−−−→
Wn→Wm

[ eλV (a,b) ]r (4.46)

under the embedding and thus satisfies the locality assumption (V). It is obvious from the

definition (4.18) that [ eλV (a,b) ]r is invariant when V (t) is replaced by V (a+ b− t) and thus

satisfies the reflection assumption (VI) as well.

Let us next define the operators [V (a) eλV (a,b) ]r and [ eλV (a,b) V (b) ]r. Using the renor-

malized contractions 〈V (a, b)2 〉r, 〈V (a)V (a, b) 〉r , and 〈V (a, b)V (b) 〉r, they are defined

as follows:

[V (a) eλV (a,b)]r ≡ e
1
2
λ2〈V (a,b)2〉r ◦

◦

(
V (a) + λ 〈V (a)V (a, b) 〉r

)
eλV (a,b) ◦

◦ ,

[ eλV (a,b) V (b) ]r ≡ e
1
2
λ2〈V (a,b)2〉r ◦

◦ eλV (a,b)
(

V (b) + λ 〈V (a, b)V (b) 〉r
)

◦
◦ .

(4.47)
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Let us prove that [V (a) eλV (a,b) ]r satisfies the condition (4.29). It follows from the definition

of ◦
◦ V (t1)V (t2) . . . V (tn) ◦

◦ that

◦
◦ V (a) eλV (a,b) ◦

◦ = lim
ǫ→0

[
V (a − ǫ) ◦

◦ eλV (a,b) ◦
◦ − λ

∫ b

a
dt G(a − ǫ, t) ◦

◦ eλV (a,b) ◦
◦

]
. (4.48)

We thus find

e
1
2
λ2〈V (a,b)2〉r◦

◦V (a)eλV (a,b)◦
◦−−−−−−−→

Wn→Wm

e
1
2
λ2〈V (a,b)2〉r◦

◦V (a)eλV (a,b)◦
◦−λ

∫ b

a
dtδG(a, t)[eλV (a,b)]r

(4.49)

for the first term in the definition (4.47) of [V (a)eλV (a,b)]r. Similarly, the second term

transforms as

λ〈V (a)V (a, b)〉r[eλV (a,b)]r −−−−−−−→
Wn→Wm

λ〈V (a)V (a, b)〉r [eλV (a,b)]r+λ

∫ b

a
dtδG(a, t)[eλV (a,b)]r ,

(4.50)

where we used (4.33). Combining (4.49) and (4.50), we have thus shown that [V (a)eλV (a,b)]r
satisfies (4.29).

To summarize, we have defined [ eλV (a,b) ]r satisfying the assumptions of locality (V)

and reflection (VI) and [V (a) eλV (a,b) ]r satisfying (4.29) for the class of marginal operators

satisfying the finiteness condition stated in section 4.1.

4.4 The BRST transformation

Let us next calculate the BRST transformation of [ eλV (a,b) ]r defined in (4.43) to verify that

the assumption (I) on the BRST transformation is satisfied and determine OL and OR.

The calculation at O(λ) is the same as (2.3) in the regular case and gives O
(1)
L = O

(1)
R = cV .

The calculation at O(λ2) involves the OPE of the marginal operator with itself. We in fact

expect that the assumption (I) is not satisfied when the marginal deformation is not exactly

marginal. It is known that the deformation associated with V is not exactly marginal if

the single-pole term in (4.4) is nonvanishing. See, for example, [48]. In the construction of

analytic solutions in [18], there was indeed an obstruction to solve the equation of motion

at O(λ2) when the single-pole term in (4.4) is nonvanishing. It is therefore instructive to

briefly consider the case of the more general OPE (4.4),

V (t)V (0) ∼ 1

t2
+

1

t
Ṽ (0) , (4.51)

and to see how the assumption (I) is violated when the single-pole term with Ṽ is nonva-

nishing. We regularize V (2)(a, b) as follows:

∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2 V (t1)V (t2) . (4.52)
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The calculation of its BRST transformation is similar to the calculation of QBΨ
(3)
L presented

in (2.21) and (2.22):

QB ·
[ ∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2V (t1)V (t2)

]
=

∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2

[
∂t1 [cV (t1)]V (t2)+V (t1)∂t2 [cV (t2)]

]

=

∫ b−ǫ

a
dt1V (t1)cV (b)−

∫ b

a+ǫ
dt2cV (a)V (t2)+

∫ b−ǫ

a
dt1V (t1)V (t1+ǫ)

[
c(t1)−c(t1+ǫ)

]
.

(4.53)

The last term on the right-hand side no longer vanishes in the limit ǫ → 0 when the OPE

of V with itself is singular and can be calculated as follows:

∫ b−ǫ

a
dtV (t)V (t + ǫ)

[
c(t) − c(t + ǫ)

]

=

∫ b−ǫ

a
dt

(
1

ǫ2
− 1

ǫ
Ṽ (t) + O(ǫ0)

)[
−ǫ∂c(t) − ǫ2

2
∂2c(t) + O(ǫ3)

]

=

∫ b−ǫ

a
dt

[
∂cṼ (t) − 1

ǫ
∂c(t) − 1

2
∂2c(t)

]
+ O(ǫ)

=

∫ b−ǫ

a
dt∂cṼ (t) − 1

ǫ
c(b − ǫ) +

1

ǫ
c(a) − 1

2
∂c(b − ǫ) +

1

2
∂c(a) + O(ǫ)

=

∫ b

a
dt∂cṼ (t) − 1

ǫ
c(b) +

1

ǫ
c(a) +

1

2
∂c(b) +

1

2
∂c(a) + O(ǫ) .

(4.54)

We thus obtain

QB ·
[∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2V (t1)V (t2)

]

=

[∫ b−ǫ

a
dt1V (t1)V (b) − 1

ǫ

]
c(b) − c(a)

[∫ b

a+ǫ
dt2V (a)V (t2) −

1

ǫ

]

+
∂c(b)

2
+

∂c(a)

2
+

∫ b

a
dt1∂cṼ (t1) + O(ǫ) .

(4.55)

This does not take the form of the O(λ2) term of [eλV (a,b)OR(b)]r− [OL(a)eλV (a,b)]r because

of the term with ∂cṼ , which is finite in the limit ǫ → 0. The divergences in (4.55) arise

only when V (t) approaches the end points of the integral region, and any counterterms to

take care of those localized divergences will not cancel the finite integral of ∂cṼ over the

whole integral region. Therefore, the assumption (I) on the BRST transformation is not

satisfied when the single-pole term in (4.51) is nonvanishing. This is consistent because

the deformation is not exactly marginal in this case, as we mentioned before. When the

single-pole term in (4.51) vanishes, the result (4.55) in the limit ǫ → 0 is finite and given by

lim
ǫ→0

[
QB ·

[∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2V (t1)V (t2)

]]
= [V (a, b)cV (b)]r−[cV (a)V (a, b)]r+

∂c(b)

2
+

∂c(a)

2
.

(4.56)
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Note that [V (a, b)V (b)]r and [V (a)V (a, b)]r given in (4.35) and (4.36) emerged naturally.

We conclude that

O
(1)
R = O

(1)
L = cV , O

(2)
R = − O

(2)
L =

1

2
∂c (4.57)

for any exactly marginal deformation with the singular OPE given by (4.1).

Let us now calculate the BRST transformation of [eλV (a,b)]r for the class of marginal

operators satisfying the finiteness condition (4.10) in section 4.1:

QB · [eλV (a,b)]r = e
1
2
λ2〈V (a,b)2〉r

∞∑

n=1

λn

n!
QB · ◦◦ (V (a, b))n ◦

◦ . (4.58)

We use the expression (4.18) of ◦
◦ (V (a, b))n ◦

◦ and calculate its BRST transformation as

follows:

QB · ◦◦ (V (a, b))n ◦
◦

=
∑

0≤k≤n/2

(−1)kn!

2kk!(n − 2k)!
lim
ǫ→0

∫

Γ
(n)
ǫ

dnt

k∏

i=1

G(ti, ti+k)QB ·
n∏

j=2k+1

V (tj)

= n
∑

0≤k<n/2

(−1)k(n − 1)!

2kk!(n − 2k − 1)!
lim
ǫ→0

∫

Γ
(n)
ǫ

dnt
k∏

i=1

G(ti, ti+k)
n−1∏

j=2k+1

V (tj)∂tn

[
cV (tn)

]

= n lim
ǫ→0

∫

Γ
(n)
ǫ

dnt ◦◦ V (t1) . . . V (tn−1)
◦
◦ ∂tn

[
cV (tn)

]
,

(4.59)

where dnt ≡ dt1dt2 . . . dtn. Using (4.8), this can be written in the following way:

QB · ◦◦ (V (a, b))n ◦
◦ = lim

ǫ→0

∫

Γ
(n)
ǫ

dnt

[
n ◦

◦ V (t1) . . . V (tn−1)∂tn

[
cV (tn)

]
◦
◦

+n(n−1) ◦
◦ V (t1) . . . V (tn−2)

◦
◦ ∂tn

[
G(tn−1, tn)c(tn)

]]
.

(4.60)

The first term of the integrand on the right-hand side is finite so that we can take the limit

ǫ → 0 and carry out the integral over tn. The only divergence in the second term of the

integrand arises when |tn − tn−1| → 0. The integral region therefore factorizes into that of

t1, t2, . . . tn−2 without the restriction |ti − tj| ≥ ǫ and Γ
(2)
ǫ for tn−1 and tn. We thus obtain

QB · ◦◦ (V (a, b))n ◦
◦ = n

∫ b

a
dtn

◦
◦ (V (a, b))n−1 ∂tn

[
cV (tn)

]
◦
◦

+n(n−1) ◦
◦ (V (a, b))n−2 ◦

◦ lim
ǫ→0

∫

Γ
(2)
ǫ

dtn−1dtn∂tn

[
G(tn−1, tn)c(tn)

]

= n ◦
◦ (V (a, b))n−1 [

cV (b) − cV (a)
]
◦
◦

+n(n−1) ◦
◦ (V (a, b))n−2 ◦

◦ lim
ǫ→0

∫

Γ
(2)
ǫ

dtn−1dtn∂tn

[
G(tn−1, tn)c(tn)

]
.

(4.61)
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The integral can be evaluated as follows:

lim
ǫ→0

∫

Γ
(2)
ǫ

dt1dt2∂t2

[
G(t1, t2)c(t2)

]

= lim
ǫ→0

[∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2∂t2

[
G(t1, t2)c(t2)

]
+

∫ b

a+ǫ
dt1

∫ t1−ǫ

a
dt2∂t2

[
G(t1, t2)c(t2)

]]

= lim
ǫ→0

[∫ b−ǫ

a
dt1

[
G(t1, b)c(b) − G(t1, t1 + ǫ)c(t1 + ǫ)

]

+

∫ b

a+ǫ
dt1

[
G(t1 − ǫ, t1)c(t1 − ǫ) − G(a, t1)c(a)

]]

= lim
ǫ→0

[∫ b−ǫ

a
dtG(t, b)c(b) −

∫ b

a+ǫ
dtG(a, t)c(a) +

∫ b−ǫ

a
dtG(t, t + ǫ)

[
c(t) − c(t + ǫ)

]]
.

(4.62)

The calculation of the last term is essentially the same as that of (4.54) without the term

involving Ṽ :

∫ b−ǫ

a
dtG(t, t + ǫ)

[
c(t) − c(t + ǫ)

]
=

∫ b−ǫ

a
dt

( 1

ǫ2
+ O(ǫ0)

)[
−ǫ∂c(t) − ǫ2

2
∂2c(t) + O(ǫ3)

]

= −1

ǫ
c(b) +

1

ǫ
c(a) +

1

2
∂c(b) +

1

2
∂c(a) + O(ǫ) .

(4.63)

We thus find

lim
ǫ→0

∫

Γ
(2)
ǫ

dt1dt2∂t2

[
G(t1, t2)c(t2)

]

= lim
ǫ→0

[∫ b−ǫ

a
dtG(t, b) − 1

ǫ

]
c(b) − lim

ǫ→0

[∫ b

a+ǫ
dtG(a, t) − 1

ǫ

]
c(a) +

1

2
∂c(b) +

1

2
∂c(a)

= 〈V (a, b)V (b)〉rc(b) − 〈V (a)V (a, b)〉rc(a) +
1

2
∂c(b) +

1

2
∂c(a) ,

(4.64)

where we have used (4.31) and (4.36). Combining this and (4.61), the result can be written

as follows:

QB · ◦◦ eλV (a,b) ◦
◦ = λ ◦

◦ eλV (a,b)cV (b) ◦
◦ − λ ◦

◦ cV (a)eλV (a,b) ◦
◦

+λ2〈V (a, b)V (b)〉r ◦
◦ eλV (a,b)c(b) ◦

◦ − λ2〈V (a)V (a, b)〉r ◦
◦ c(a)eλV (a,b) ◦

◦

+
λ2

2
◦
◦ eλV (a,b)∂c(b) ◦

◦ +
λ2

2
◦
◦ ∂c(a)eλV (a,b) ◦

◦ . (4.65)

Note that the structures

◦
◦

(
V (a) + λ〈V (a)V (a, b)〉r

)
eλV (a,b) ◦

◦,
◦
◦ eλV (a,b)

(
V (b) + λ〈V (a, b)V (b)〉r

)
◦
◦ (4.66)

of [V (a)eλV (a,b)]r and [eλV (a,b)V (b)]r defined in (4.47) emerged naturally. Therefore, the

BRST transformation of [eλV (a,b)]r can be written using the definitions (4.47) as follows:

QB ·[eλV (a,b)]r =

[
eλV (a,b)

(
λcV (b)+

λ2

2
∂c(b)

)]

r

−
[(

λcV (a)−λ2

2
∂c(a)

)
eλV (a,b)

]

r

. (4.67)
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We have thus verified the assumption (I) on the BRST transformation and determined the

operators OL and OR to be

OR = λcV +
λ2

2
∂c , OL = λcV − λ2

2
∂c , (4.68)

or equivalently

O
(1)
R = O

(1)
L = cV, O

(2)
R = − O

(2)
L =

1

2
∂c, O

(n)
R = O

(n)
L = 0 for n ≥ 3 . (4.69)

With these expressions for OR and OL and the explicit forms of [eλV (a,b)]r and [V (a)eλV (a,b)]r
given in (4.43) and (4.47), ΨL and Ψ can be explicitly constructed for the class of marginal

deformations satisfying the finiteness condition (4.10) in section 4.1. If all the assump-

tions (I)–(VI) stated in the introduction are satisfied, ΨL and Ψ are guaranteed to solve

the equation of motion. The locality assumption (V) for the operator [OL(a)eλV (a,b)]r is sat-

isfied because of (4.29), (4.46), and (4.68). We have thus verified the assumptions (I), (V),

and (VI). We prove the remaining assumptions of replacement (III) and factorization (IV)

in appendix B.1 and the assumption (II) on the BRST transformation in appendix B.2.

4.5 Conformal properties of [OL(a)eλV (a,b)]r

The operator OL(a) always appears in the combination [OL(a)eλV (a,b) . . .]r with some b.

Similarly, the operator OR(b) always appears in the combination [. . . eλV (a,b)OR(b)]r with

some a. Correspondingly, the operators O
(l)
L (a) and O

(r)
R (b) always appear in the form

[ n∑

l=1

O
(l)
L (a)V (n−l)(a, b) . . .

]

r

,

[
. . .

n∑

r=1

V (n−r)(a, b)O
(r)
R (b)

]

r

, (4.70)

or [ ∑

l+r≤n

O
(l)
L (a)V (n−l−r)(a, b)O

(r)
R (b)

]

r

. (4.71)

We do not need to require the existence of OL(a) and OR(b) as independent operators,

and we only need to define [OL(a)eλV (a,b) . . .]r and [. . . eλV (a,b)OR(b)]r expanded in λ. In

fact, as we will explain in the following, operators in these forms are expected to transform

covariantly under conformal transformations. Let us consider conformal transformations of

the operator [OL(a)eλV (a,b)]r we determined in section 4.4 to the first nontrivial order in λ.

When we change boundary conditions on a segment between a and b of the real axis,

the two end points a and b behave as primary fields under conformal transformations,

and they are often described in terms of boundary-condition changing operators. We

thus expect that the operator [eλV (a,b)]r is mapped by a conformal transformation g(z)

to g′(a)h(λ)g′(b)h(λ)[eλV (g(a),g(b))]r, where h(λ) can be interpreted as the dimension of the

boundary-condition changing operator. For simplicity, we assume that the segment between

a and b is mapped by g(z) to a segment on the real axis so that the operator [eλV (g(a),g(b))]r is

well defined without any generalization. Since the BRST transformation maps a primary

field to another primary field of the same dimension, we also expect that the operator

[OL(a)eλV (a,b)]r transforms covariantly and is mapped by g(z) as

g ◦ [OL(a)eλV (a,b)]r = g′(a)h(λ)g′(b)h(λ)[OL(g(a))eλV (g(a),g(b))]r . (4.72)
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To linear order in λ, the conformal transformation is

g ◦
[
λcV (a) + O(λ2)

]
= λcV (g(a)) + O(λ2) (4.73)

and is consistent with (4.72) for h(λ) = O(λ). At O(λ2), we have

[O
(1)
L (a)V (a, b)]r + [O

(2)
L (a)]r = [cV (a)V (a, b)]r −

1

2
∂c(a) . (4.74)

The operator ∂c is not a primary field and thus the second term of (4.74) does not transform

covariantly under conformal transformations. In fact, the first term does not transform

covariantly either but the sum [O
(1)
L (a)V (a, b)]r + [O

(2)
L (a)]r does transform covariantly.

The operator
[
V (a)V (a, b)

]
r

is mapped by g(z) as follows:

g ◦
[
V (a)V (a, b)

]
r

= lim
ǫ→0

[∫ b

a+ǫ
dtg′(a)V

(
g(a)

)
g′(t)V

(
g(t)

)
− 1

ǫ

]

= lim
ǫ→0

[
g′(a)

∫ g(b)

g(a+ǫ)
dt̃V

(
g(a)

)
V

(
t̃
)
− 1

ǫ

]

= g′(a) lim
ǫ→0

[∫ g(b)

g(a+ǫ)
dt̃V

(
g(a)

)
V

(
t̃
)
− 1

g(a + ǫ) − g(a)

]
+ lim

ǫ→0

[
g′(a)

g(a + ǫ) − g(a)
− 1

ǫ

]

= g′(a)
[
V

(
g(a)

)
V

(
g(a), g(b)

)]
r
− g′′(a)

2g′(a)
,

(4.75)

where t̃ = g(t). If we compare this with

g ◦ ∂c(a) =
d

da

[
c
(
g(a)

)

g′(a)

]
= ∂c

(
g(a)

)
− g′′(a)

g′(a)2
c
(
g(a)

)
, (4.76)

we find

g ◦ [cV (a)V (a, b)]r − g ◦ ∂c(a)

2

=
[
cV

(
g(a)

)
V

(
g(a), g(b)

)]
r
− g′′(a)

2g′(a)2
c
(
g(a)

)
− ∂c

(
g(a)

)

2
+

g′′(a)

2g′(a)2
c
(
g(a)

)

=
[
cV

(
g(a)

)
V

(
g(a), g(b)

)]
r
− ∂c

(
g(a)

)

2
.

(4.77)

This is consistent with (4.72) at O(λ2) with h(λ) = O(λ2). Note that the coefficient

of ∂c in (4.74) had to be −1/2 for the noncovariant term to be canceled. Each of the

two operators [O
(1)
L (a)V (a, b)]r and [O

(2)
L (a)]r defined on Wn is invariant when embedded

in Wm. Thus any linear combination of the two is invariant under the embedding from

Wn to Wm, but only the particular combination [O
(1)
L (a)V (a, b)]r + [O

(2)
L (a)]r transforms

covariantly under conformal transformations. Although the covariance of [eλV (a,b)]r and

[OL(a)eλV (a,b)]r under conformal transformations is not required for the solution to satisfy

the equation of motion, this calculation provides a nontrivial consistency check of our result

for the operator OL.
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5 String field theory around the deformed background

5.1 Action

Now that we have constructed solutions for general marginal deformations, let us expand

the string field theory action around the solutions. The string field theory action is given by

S[Ψ] = − 1

g2

[
1

2
〈Ψ, QBΨ〉 +

1

3
〈Ψ,Ψ ∗ Ψ〉

]
, (5.1)

where g is the open string coupling constant. In the case of a D25-brane in flat spacetime,

g is related to the D25-brane tension T25 as T25 = 1/(2π2g2) . We shift the string field Ψ as

Ψ = Ψλ + δΨ, (5.2)

where the solution Ψλ is the real solution derived in section 3.4:

Ψλ =
1

2

[
1√
U

∗ ΨL ∗
√

U +
√

U ∗ ΨR ∗ 1√
U

+
1√
U

∗ QB

√
U − QB

√
U ∗ 1√

U

]

=
1

2

[
1√
U

∗ (AL + AR) ∗ 1√
U

+
1√
U

∗ QB

√
U − QB

√
U ∗ 1√

U

]
.

(5.3)

We then expand the action and obtain

S[Ψ] = S[Ψλ] + S[δΨ] − 1

g2
〈δΨ,Ψλ ∗ δΨ〉

= S[Ψλ] + S[δΨ] − 1

2g2

[
〈δΨ,

1√
U

∗ (AL + AR) ∗ 1√
U

∗ δΨ〉

+ 〈δΨ,
1√
U

∗ QB

√
U ∗ δΨ〉 − 〈δΨ, QB

√
U ∗ 1√

U
∗ δΨ〉

]
.

(5.4)

The term linear in δΨ vanishes because Ψλ satisfies the equation of motion. The term

S[Ψλ] only shifts the action by an overall constant. In fact, it should vanish for solutions

corresponding to exactly marginal deformations. The structure of the action suggests the

following field redefinition:

Φ ≡
√

U ∗ δΨ ∗
√

U =⇒ δΨ =
1√
U

∗ Φ ∗ 1√
U

. (5.5)

The term S[δΨ] can be expressed in terms of the new variable Φ as follows:

S[δΨ]=S

[
1√
U
∗Φ∗ 1√

U

]

= − 1

2g2

〈 1√
U
∗Φ∗ 1√

U
,QB

[
1√
U
∗Φ∗ 1√

U

]〉
− 1

3g2

〈
Φ, U−1∗Φ∗U−1∗Φ∗U−1

〉

= − 1

2g2

〈
Φ, U−1∗QBΦ∗U−1

〉
− 1

3g2

〈
Φ, U−1∗Φ∗U−1∗Φ∗U−1

〉

− 1

2g2

〈 1√
U
∗Φ∗ 1√

U
,QB

1√
U
∗Φ∗ 1√

U

〉
+

1

2g2

〈 1√
U
∗Φ∗ 1√

U
,

1√
U
∗Φ∗QB

1√
U

〉
.

(5.6)
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Using the identity

QB
1√
U

= − 1√
U

∗ QB

√
U ∗ 1√

U
, (5.7)

it is easy to see that the last line of (5.6) precisely cancels the last two terms on the right-

hand side of (5.4). The action around the deformed background in terms of Φ is thus

given by

S[Ψ] = S[Ψλ] − 1

2g2

[〈
Φ, U−1 ∗ QBΦ ∗ U−1

〉
+

〈
Φ, U−1 ∗ (AL + AR) ∗ U−1 ∗ Φ ∗ U−1

〉]

− 1

3g2

〈
Φ, U−1 ∗ Φ ∗ U−1 ∗ Φ ∗ U−1

〉
.

(5.8)

Note that
√

U and 1/
√

U completely disappeared and the action is written in terms of

U−1, AL, and AR.

Let us now introduce the following deformed algebraic structures:

A ⋆ B ≡ A ∗ U−1 ∗ B,

QA ≡ QBA + AL ⋆ A − (−1)AA ⋆ AR = QBA + ΨL ∗ A − (−1)AA ∗ ΨR ,

〈〈A,B〉〉 ≡ 〈A,U−1 ∗ B ∗ U−1〉 .

(5.9)

As U = 1+O(λ2), AL = O(λ), and AR = O(λ), these structures reduce to the original star

product ∗, BRST operator QB , and inner product 〈 , 〉 when λ → 0. The shifted action

S[Φ] ≡ S[Ψ] − S[Ψλ] in terms of the new variable Φ can be written as follows:

S[Φ] = − 1

g2

[
1

2
〈〈Φ,QΦ〉〉 +

1

3
〈〈Φ,Φ ⋆ Φ〉〉

]
, (5.10)

where we have used

〈Φ, U−1 ∗ (AL + AR) ∗ U−1 ∗ Φ ∗ U−1〉
= 〈Φ, U−1 ∗ AL ∗ U−1 ∗ Φ ∗ U−1〉 + 〈Φ, U−1 ∗ Φ ∗ U−1 ∗ AR ∗ U−1〉 .

(5.11)

Thus string field theory around the deformed background can be described by the star

product ⋆, the operator Q, and the inner product 〈〈 , 〉〉.

5.2 Properties of algebraic structures around the deformed background

Let us verify that the new algebraic structures obey the following relations necessary for a

consistent formulation of string field theory:

Q2A = 0 , (5.12)

Q(A ⋆ B) = (QA) ⋆ B + (−1)AA ⋆ (QB) , (5.13)

〈〈A,B〉〉 = (−1)AB〈〈B,A〉〉 , (5.14)

〈〈QA,B〉〉 = −(−1)A〈〈A,QB〉〉 , (5.15)

〈〈A,B ⋆ C〉〉 = 〈〈A ⋆ B,C〉〉 . (5.16)
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Furthermore, we show that the generalized wedge states Uα satisfy

QUα = 0 . (5.17)

Let us begin with (5.12). It follows from the definition of Q that

Q2A = Q
[
QBA + ΨL∗A − (−1)AA∗ΨR

]

= Q2
BA + QBΨL∗A − ΨL∗QBA − (−1)AQBA∗ΨR − A∗QBΨR

+ΨL∗
(
QBA+ΨL∗A−(−1)AA∗ΨR

)
+(−1)A

(
QBA+ΨL∗A−(−1)AA∗ΨR

)
∗ΨR .

(5.18)

Using Q2
B = 0 and the equation of motion for ΨL and ΨR, all the terms cancel and we find

Q2A = 0.

Similarly, we can prove (5.13) as follows:

Q(A ⋆ B) = QBA∗U−1∗B + (−1)AA∗QBU−1∗B + (−1)AA∗U−1∗QBB

+ ΨL∗A∗U−1∗B − (−1)A(−1)BA∗U−1∗B∗ΨR

= QA ⋆ B + (−1)AA ⋆ QB

+(−1)AA∗QBU−1∗B + (−1)AA∗ΨR∗U−1∗B−(−1)AA∗U−1∗ΨL∗B .

(5.19)

The terms in the last line cancel because of the identity

QBU−1 = −U−1 ∗QBU ∗U−1 = U−1 ∗ (AL −AR) ∗U−1 = U−1 ∗ΨL −ΨR ∗U−1 . (5.20)

This completes the proof of (5.13).

It is easy to verify (5.14) using the properties of the inner product 〈 , 〉:

〈〈A,B〉〉 = 〈A,U−1 ∗ B ∗ U−1〉
= 〈A ∗ U−1, B ∗ U−1〉
= (−1)AB〈B ∗ U−1, A ∗ U−1〉
= (−1)AB〈B,U−1 ∗ A ∗ U−1〉
= (−1)AB〈〈B,A〉〉 .

(5.21)

To show (5.15), we use the corresponding identity of QB and the properties of 〈 , 〉. We

find

〈〈QA,B〉〉 = 〈QBA + ΨL∗A − (−1)AA∗ΨR , U−1∗B∗U−1〉
= − (−1)A〈A, QBU−1∗B∗U−1 + U−1∗QBB∗U−1 + (−1)BU−1∗B∗QBU−1〉

+ (−1)A(−1)B〈A , U−1∗B∗U−1∗ΨL〉 − (−1)A〈A , ΨR∗U−1∗B∗U−1〉 .

(5.22)

Using the identity (5.20), we obtain

〈〈QA,B〉〉 = − (−1)A〈A , U−1 ∗
(
QBB + ΨL ∗ B − (−1)BB ∗ ΨR

)
∗ U−1〉

= − (−1)A〈〈A,QB〉〉 .
(5.23)
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Finally, the relation (5.16) follows from the definitions of the deformed structures and the

property of the inner product 〈 , 〉:

〈〈A,B ⋆ C〉〉 = 〈A , U−1 ∗ B ∗ U−1 ∗ C ∗ U−1〉
= 〈A ∗ U−1 ∗ B , U−1 ∗ C ∗ U−1〉 = 〈〈A ⋆ B,C〉〉 .

(5.24)

We have thus shown that the deformed algebraic structures satisfy all the algebraic relations

required for a consistent formulation of string field theory.

Let us now show the equation (5.17), namely, that the generalized wedge states Uα

are annihilated by Q. We define the generalizations AL,α and AR,α of AL and AR, respec-

tively, by

AL,α ≡
∞∑

n=1

λnA
(n)
L,α , AR,α ≡

∞∑

n=1

λnA
(n)
R,α (5.25)

for α ≥ 0, where

〈φ ,A
(n)
L,α〉 =

n∑

l=1

〈f ◦ φ(0)[O
(l)
L (1)V (n−l)(1, n + α)]r〉Wn+α

,

〈φ ,A
(n)
R,α〉 =

n∑

r=1

〈f ◦ φ(0)[V (n−r)(1, n + α)O
(r)
R (n + α)]r〉Wn+α

.

(5.26)

Note that AL = AL,0 and AR = AR,0. The states AL,α and AR,α satisfy the following

relations:

QBUα = AR,α − AL,α , AL,α+β = AL,α ∗ U−1 ∗ Uβ , AR,α+β = Uα ∗ U−1 ∗ AR,β ,

(5.27)

which are generalizations of QBU = AR−AL and Uα+β = Uα ∗U−1 ∗Uβ. The first relation

in (5.27) immediately follows from the assumption (I). The second and third relations can

be shown using the assumptions (III)–(V) as in the proofs of Uα+β = Uα ∗ U−1 ∗ Uβ and

−QBAL = AL ∗U−1 ∗AR in section 3.3 and appendix A. Using these relations, it is easy

to show that QUα vanishes:

QUα = AR,α − AL,α + ΨL ∗ Uα − Uα ∗ ΨR

= Uα ∗ U−1 ∗ AR − AL ∗ U−1 ∗ Uα + AL ∗ U−1 ∗ Uα − Uα ∗ U−1 ∗ AR

= 0 .

(5.28)

The state U1 is expected to play the role of the SL(2, R)-invariant vacuum in the

deformed theory, and U = U0 is the identity state of the deformed star algebra. In fact,

U ⋆ A = U ∗ U−1 ∗ A = A , A ⋆ U = A ∗ U−1 ∗ U = A . (5.29)

6 Discussion

The main result of the paper is the construction of analytic solutions of open bosonic string

field theory for general marginal deformations. We presented a procedure to construct
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a solution from the operator [eλV (a,b)]r satisfying the set of assumptions stated in the

introduction. We believe that all of these assumptions are satisfied for any exactly marginal

deformation and are thus necessary conditions for exact marginality of the deformation.

We also believe that the set of assumptions provides a sufficient condition for marginality

to all orders in λ because we have succeeded in constructing solutions of string field theory.

We regard this new characterization of exact marginality as another important result of

the paper, and we hope that our approach motivated by string field theory will provide

new perspectives on the study of marginal deformations.

In section 4 we explicitly constructed the operator [eλV (a,b)]r for any marginal oper-

ator satisfying the finiteness condition (4.10). We thus believe that the finiteness condi-

tion (4.10) is a sufficient condition for marginality to all orders in λ. We can actually relax

the condition because we only needed finiteness of the operator ◦
◦(V (a, b))n ◦

◦ constructed

in (4.18). Therefore, we can construct solutions even if the finiteness condition (4.10) is

violated as long as the operator ◦
◦(V (a, b))n ◦

◦ is well defined for any n.4 It would be an in-

teresting open problem whether the condition can be further relaxed. In particular, it is an

interesting question whether the operators O
(n)
L and O

(n)
R with n ≥ 3 can be nonvanishing by

nontrivial collisions of more than two operators. In [48], Recknagel and Schomerus gave a

sufficient condition for exact marginality which they called self-locality of the marginal oper-

ator. See section 2.4 of [48]. It would be also interesting to investigate the relation between

their characterization of exact marginality in boundary conformal field theory and ours.

In [21], Fuchs, Kroyter and Potting constructed non-real solutions for the marginal

deformation corresponding to turning on the constant mode of the gauge field. We discuss

the relation between their solutions and ours in appendix C and show that our solutions

ΨL and ΨR for this particular marginal deformation coincide with theirs.

There are many interesting directions for future work. It would be interesting to study

the solution corresponding to the deformation by the cosine potential in detail. The defor-

mation at the value of λ describing lower-dimensional D-branes is particularly interesting.

In the level-truncation analysis of marginal deformations, it has been demonstrated that

the Siegel gauge condition is not globally well defined [56] and the branch of the marginal

deformation corresponding to turning on the constant mode of the gauge field truncates

at a finite value of the deformation parameter [29].5 It is therefore important to study the

convergence property of the expansion in λ for our solutions.

We expect that our work will play a role in further investigating background inde-

pendence in string field theory by extending previous work [51]–[55]. We also expect

that the generalization of our construction to open superstring field theory formulated by

Berkovits [28] would be fairly straightforward. Another important generalization is the

construction of solutions corresponding to boundary conditions which are not connected

by exactly marginal deformations. For example, consider the case where the original CFT

flows to a different CFT by a marginally relevant deformation. We then expect that the

operator [eλV (a,b)]r satisfying the assumptions (I) and (II) can be constructed at a special

4 We thank Ashoke Sen for discussions on this point and for explaining explicit examples.
5 See [57, 58] for recent related study.
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value of λ and our framework will be useful in constructing solutions for such marginally

relevant deformations. Finally, the approach explored in [59] seems to be closely related to

ours and may be useful in future developments of our work.
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A Proof of − QBAL = AL ∗ U−1
∗ AR

In section 3.3 we have shown that Ul+r = Ul ∗U−1 ∗Ur holds for the general case. To prove

the equation − QBAL = AL ∗ U−1 ∗ AR in (3.24), we have to extend this identity to the

case where OL and OR are also inserted. We first present an explicit proof at O(λ4) and

then explain how the proof generalizes to all orders. The equation (3.24) at O(λ4) is

− QBA
(4)
L = A

(1)
L ∗ A

(3)
R + A

(2)
L ∗ A

(2)
R + A

(3)
L ∗ A

(1)
R − A

(1)
L ∗ U (2) ∗ A

(1)
R . (A.1)

We need to prove that

[O
(1)
L (1)V (2)(1, 4)O

(1)
R (4)]r + [O

(1)
L (1)V (1)(1, 4)O

(2)
R (4)]r + [O

(2)
L (1)V (1)(1, 4)O

(1)
R (4)]r

+ [O
(1)
L (1)O

(3)
R (4)]r + [O

(2)
L (1)O

(2)
R (4)]r + [O

(3)
L (1)O

(1)
R (4)]r

= [W
(1)
L (1, 1)]r [W

(3)
R (2, 4)]r + [W

(2)
L (1, 2)]r [W

(2)
R (3, 4)]r + [W

(3)
L (1, 3)]r [W

(1)
R (4, 4)]r

− [W
(1)
L (1, 1)]r [V (2)(2, 3)]r [W

(1)
R (4, 4)]r ,

(A.2)

where we denoted terms of [OL(a)eλV (a,b)]r and [eλV (a,b)OR(b)]r at O(λn) as follows:

W
(n)
L (a, b) ≡

n∑

l=1

O
(l)
L (a)V (n−l)(a, b), W

(n)
R (a, b) ≡

n∑

r=1

V (n−r)(a, b)O
(r)
R (b). (A.3)

Recall that V (0)(a, b) ≡ 1 even in the limit b → a. Thus we have W
(1)
L (1, 1) = O

(1)
L (1)

and W
(1)
R (4, 4) = O

(1)
R (4). In (A.2) we have used the locality assumption (V) on the

operators [eλV (a,b)]r and [OL(a)eλV (a,b)]r. The operator [eλV (a,b)OR(b)]r defined on Wn

also takes the same form when embedded in Wm with m > n because [eλV (a,b)OR(b)]r =

QB · [eλV (a,b)]r + [OL(a)eλV (a,b)]r from the assumption (I).

We next use the factorization assumption (IV) of the following form:

[OL(1)eλ1V (1,2)eλ2V (3,4)OR(4)]r = [OL(1)eλ1V (1,2)]r[e
λ2V (3,4)OR(4)]r . (A.4)

The operator OL(a) always appears in the combination [OL(a)eλV (a,b) . . .]r with some b,

and the value of λ for OL(a) is the same as the one appearing in the exponential operator.
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Similarly, the operator OR(b) always appears in the combination [. . . eλV (a,b)OR(b)]r with

some a, and the value of λ for OR(b) is the same as the one appearing in the exponential

operator. In (A.4), for example, the value of λ for OL(1) is λ1 and the value of λ for OR(4)

is λ2. The relation (A.4) at O(λ2
1λ

2
2) reads

[W
(2)
L (1, 2)W

(2)
R (3, 4)]r = [W

(2)
L (1, 2)]r [W

(2)
R (3, 4)]r . (A.5)

Since W
(1)
L (a, a) = W

(1)
L (a, b) and W

(1)
R (b, b) = W

(1)
R (a, b) for a < b, the operators

[W
(1)
L (1, 1)]r and [W

(1)
R (4, 4)]r can be thought of as the O(λ1) term of [OL(1)eλ1V (1,1+α)]r

and the O(λ2) term of [eλ2V (4−α,4)OR(4)]r , respectively, with arbitrary α in the range

0 < α < 1. Therefore, the right-hand side of (A.2) can be written using the factorization

assumption (IV) as follows:

[W
(1)
L (1, 1)]r [W

(3)
R (2, 4)]r + [W

(2)
L (1, 2)]r [W

(2)
R (3, 4)]r + [W

(3)
L (1, 3)]r [W

(1)
R (4, 4)]r

− [W
(1)
L (1, 1)]r [V

(2)(2, 3)]r [W
(1)
R (4, 4)]r

= [W
(1)
L (1, 1)W

(3)
R (2, 4)]r + [W

(2)
L (1, 2)W

(2)
R (3, 4)]r + [W

(3)
L (1, 3)W

(1)
R (4, 4)]r

− [W
(1)
L (1, 1)V (2)(2, 3)W

(1)
R (4, 4)]r .

(A.6)

We then apply the replacement assumption (III) of the following forms:

[OL(1)eλ1V (1,1+α)eλ2V (2,4)OR(4)]r = [OL(1)eλ1V (1,1+α)eλ2V (2,3)eλ2V (3,4)OR(4)]r ,

[OL(1)eλ1V (1,3)eλ2V (4−α,4)OR(4)]r = [OL(1)eλ1V (1,2)eλ1V (2,3)eλ2V (4−α,4)OR(4)]r ,
(A.7)

where α is again an arbitrary number in the range 0 < α < 1. The first equation at

O(λ1λ
3
2) and the second equation at O(λ3

1λ2) give

[W
(1)
L (1, 1)W

(3)
R (2, 4)]r = [W

(1)
L (1, 1)W

(3)
R (3, 4)]r + [W

(1)
L (1, 1)V (1)(2, 3)W

(2)
R (3, 4)]r

+ [W
(1)
L (1, 1)V (2)(2, 3)W

(1)
R (3, 4)]r ,

[W
(3)
L (1, 3)W

(1)
R (4, 4)]r = [W

(1)
L (1, 2)V (2)(2, 3)W

(1)
R (4, 4)]r +[W

(2)
L (1, 2)V (1)(2, 3)W

(1)
R (4, 4)]r

+ [W
(3)
L (1, 2)W

(1)
R (4, 4)]r .

(A.8)

Replacing W
(1)
L (1, 1) with W

(1)
L (1, 2) and W

(1)
R (4, 4) with W

(1)
R (3, 4), the right-hand side

of (A.6) can be written as follows:

[W
(1)
L (1, 1)W

(3)
R (2, 4)]r + [W

(2)
L (1, 2)W

(2)
R (3, 4)]r + [W

(3)
L (1, 3)W

(1)
R (4, 4)]r

− [W
(1)
L (1, 1)V (2)(2, 3)W

(1)
R (4, 4)]r

= [W
(1)
L (1, 2)W

(3)
R (3, 4)]r +[W

(1)
L (1, 2)V (1)(2, 3)W

(2)
R (3, 4)]r +[W

(1)
L (1, 2)V (2)(2, 3)W

(1)
R (3, 4)]r

+ [W
(2)
L (1, 2)W

(2)
R (3, 4)]r + [W

(2)
L (1, 2)V (1)(2, 3)W

(1)
R (3, 4)]r + [W

(3)
L (1, 2)W

(1)
R (3, 4)]r .

(A.9)

The terms on the left-hand side of (A.2) are obtained from the expansion of

[OL(1)eλV (1,4)OR(4)]r in λ. Using the replacement assumption (III) recursively, we have

[OL(1)eλV (1,4)OR(4)]r = [OL(1)eλV (1,2)eλV (2,3)eλV (3,4)OR(4)]r . (A.10)
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By evaluating both sides at O(λ4), the left-hand side of (A.2) can be written as

[O
(1)
L (1)V (2)(1, 4)O

(1)
R (4)]r + [O

(1)
L (1)V (1)(1, 4)O

(2)
R (4)]r + [O

(2)
L (1)V (1)(1, 4)O

(1)
R (4)]r

+ [O
(1)
L (1)O

(3)
R (4)]r + [O

(2)
L (1)O

(2)
R (4)]r + [O

(3)
L (1)O

(1)
R (4)]r

= [W
(1)
L (1, 2)W

(3)
R (3, 4)]r +[W

(1)
L (1, 2)V (1)(2, 3)W

(2)
R (3, 4)]r +[W

(1)
L (1, 2)V (2)(2, 3)W

(1)
R (3, 4)]r

+ [W
(2)
L (1, 2)W

(2)
R (3, 4)]r + [W

(2)
L (1, 2)V (1)(2, 3)W

(1)
R (3, 4)]r + [W

(3)
L (1, 2)W

(1)
R (3, 4)]r .

(A.11)

We have reproduced (A.9) and thus shown − QBAL = AL ∗ U−1 ∗ AR at O(λ4).

We will now show that this proof can be generalized to O(λn) for any n ≥ 3, while the

equation trivially holds for n = 1 and n = 2. Using the replacement assumption (III), we

can rewrite

[OL(1)eλV (1,n)OR(n)]r =

[
OL(1)eλV (1,2)

n−2∏

i=2

[eλV (i,i+1)]eλV (n−1,n)OR(n)

]

r

. (A.12)

At O(λn), this implies that the operator insertions for −QBA
(n)
L on Wn can be expanded

in the basis {[
W

(ℓ1)
L (1, 2)

n−2∏

i=2

[V (ℓi)(i, i + 1)]W
(ℓn−1)
R (n − 1, n)

]

r

}
, (A.13)

where ℓi’s are non-negative integers with
∑n−1

i=1 ℓi = n and ℓ1, ℓn−1 ≥ 1. On the other

hand, because of the locality assumption (V), the terms of AL ∗U−1 ∗AR at O(λn) can be

expressed in terms of products of the form

[W
(k1)
L (1, b1)]r

m−1∏

j=2

[V (kj)(aj , bj)]r[W
(km)
R (am, n)]r (A.14)

on Wn, where positive integers aj, bj and kj satisfy aj < bj , bj < aj+1, am ≤ n, and∑m
j=1 kj = n. From the factorization assumption (IV), we have

[OL(1)eλ1V (1,b1)]r

m−1∏

j=2

[eλjV (aj ,bj)]r[e
λmV (am,n)OR(n)]r

=
[
OL(1)eλ1V (1,b1)

m−1∏

j=2

[eλjV (aj ,bj)]eλmV (am,n)OR(n)
]
r
.

(A.15)

At O(
∏

j λkj), this allows us to express (A.14) as

[
W

(k1)
L (1, b1)

m−1∏

j=2

[V (kj)(aj , bj)]W
(km)
R (am, n)

]

r

(A.16)
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on Wn. Finally, applying the replacement assumption (III) and using W
(1)
L (1, 1) =

W
(1)
L (1, 2) and W

(1)
R (n, n) = W

(1)
R (n − 1, n), the operators can be expanded in the ba-

sis (A.13). Now consider the following state for a marginal operator with regular operator

products:
∞∑

l,r=1

λl+rc
(l)
L c

(r)
R Ul+r , (A.17)

where c
(l)
L and c

(r)
R are parameters. The operators at O(λn) on Wn can be expanded in the

basis
{

ω
(ℓ1)
L (1, 2)

n−2∏

i=2

[V (ℓi)(i, i + 1)]ω
(ℓn−1)
R (n − 1, n)

}
, (A.18)

where

ω
(i)
L (1, 2) ≡

i∑

l=1

c
(l)
L V (i−l)(1, 2) , ω

(i)
R (n − 1, n) ≡

i∑

r=1

c
(r)
R V (i−r)(n − 1, n) , (A.19)

and ℓi’s are non-negative integers with
∑n−1

i=1 ℓi = n and ℓ1, ℓn−1 ≥ 1 as in (A.13). When

the state (A.17) is expanded in this basis, the coefficients reproduce those of − QBAL

expanded in the basis (A.13) with W
(i)
L replaced by ω

(i)
L and W

(i)
R replaced by ω

(i)
R . Let us

next consider the following state for a marginal operator with regular operator products:

∞∑

l,r=1

(
λlc

(l)
L Ul

)
∗ U−1 ∗

(
λrc

(r)
R Ur

)
, (A.20)

where again c
(l)
L and c

(r)
R are parameters. The terms of (A.20) at O(λn) can also be expanded

in the basis (A.18) and the coefficients reproduce those of AL∗U−1∗AR at O(λn) expanded

in the basis (A.13) with W
(i)
L replaced by ω

(i)
L and W

(i)
R replaced by ω

(i)
R . The states (A.17)

and (A.20) are actually equal because of the relation Ul+r = Ul ∗ U−1 ∗ Ur:

∞∑

l,r=1

λl+rc
(l)
L c

(r)
R Ul+r =

∞∑

l, r=1

(
λlc

(l)
L Ul

)
∗ U−1 ∗

(
λrc

(r)
R Ur

)
. (A.21)

We have thus shown that − QBAL = AL ∗ U−1 ∗ AR to all orders in λ.

B Proof of the assumptions

In section 4 we have presented explicit forms of [eλV (a,b)]r and [OL(a)eλV (a,b)]r, which

are used in constructing ΨL and Ψ, for the class of marginal deformations satisfying the

finiteness condition (4.10) in section 4.1. We have shown that the assumptions (I), (V),

and (VI) are satisfied for these operators. We prove the remaining assumptions (II), (III),

and (IV) in this appendix.
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B.1 Assumptions (III) and (IV): replacement and factorization

Let us start by proving the replacement and factorization assumptions (III) and (IV).

To this end, we first need to define [
∏n

i=1 eλiV (ai,ai+1)]r, [V (a1)
∏n

i=1 eλiV (ai,ai+1)]r,

[
∏n

i=1 eλiV (ai,ai+1)V (an+1)]r, and [V (a1)
∏n

i=1 eλiV (ai,ai+1)V (an+1)]r. Let us begin with

[
∏n

i=1 eλiV (ai,ai+1)]r. We define it as follows:

[ n∏

i=1

eλiV (ai,ai+1)

]

r

≡
n∏

i=1

e
1
2
λ2

i 〈V (ai,ai+1)2〉r
∏

i<j

eλiλj〈V (ai,ai+1)V (aj ,aj+1)〉r ◦
◦

n∏

i=1

eλiV (ai,ai+1) ◦
◦ ,

(B.1)

where

〈V (a, b)2〉r ≡ 2 lim
ǫ→0

[∫ b−ǫ

a
dt1

∫ b

t1+ǫ
dt2G(t1, t2) −

b − a − ǫ

ǫ
− ln ǫ

]
,

〈V (a, b)V (b, c)〉r ≡ lim
ǫ→0

[∫ b−ǫ/2

a
dt1

∫ c

b+ǫ/2
dt2G(t1, t2) + ln ǫ

]
,

〈V (a, b)V (c, d)〉r ≡
∫ b

a
dt1

∫ d

c
dt2G(t1, t2)

(B.2)

for a < b < c < d. Their explicit expressions on Wm are

〈V (a, b)2〉r = ln Gm(a, b),

〈V (a, b)V (b, c)〉r =
1

2

[
lnGm(a, c) − ln Gm(a, b) − ln Gm(b, c)

]
,

〈V (a, b)V (c, d)〉r =
1

2

[
lnGm(a, d) + ln Gm(b, c) − ln Gm(a, c) − ln Gm(b, d)

]
,

(B.3)

where

Gm(t1, t2) =
π2

(m + 1)2 sin2
( t2 − t1

m + 1
π
) . (B.4)

The operator (B.1) reduces to [eλV (a,b)]r defined in (4.43) when n = 1. It is easy to

show that

〈V (a, c)2〉r = 〈V (a, b)2〉r + 2〈V (a, b)V (b, c)〉r + 〈V (b, c)2〉r ,

〈V (a, c)V (c, d)〉r = 〈V (a, b)V (c, d)〉r + 〈V (b, c)V (c, d)〉r ,

〈V (a, b)V (b, d)〉r = 〈V (a, b)V (b, c)〉r + 〈V (a, b)V (c, d)〉r ,

〈V (a, c)V (d, e)〉r = 〈V (a, b)V (d, e)〉r + 〈V (b, c)V (d, e)〉r ,

〈V (a, b)V (c, e)〉r = 〈V (a, b)V (c, d)〉r + 〈V (a, b)V (d, e)〉r

(B.5)

for a < b < c < d < e. The replacement assumption (III) is therefore satisfied for operators

of the form (B.1). The assumption (IV) of factorization is also satisfied because of the

definition of 〈V (a, b)V (c, d)〉r for a < b < c < d.

Let us next define the operators [V (a1)
∏n

i=1 eλiV (ai,ai+1)]r,

[
∏n

i=1 eλiV (ai,ai+1)V (an+1)]r, and [V (a1)
∏n

i=1 eλiV (ai,ai+1)V (an+1)]r. We define them
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as follows:

[
V (a1)

n∏

i=1

eλiV (ai,ai+1)

]

r

≡
n∏

i=1

e
1
2
λ2

i 〈V (ai,ai+1)2〉r
∏

i<j

eλiλj〈V (ai,ai+1)V (aj ,aj+1)〉r ◦
◦ V (a1)

n∏

i=1

eλiV (ai,ai+1) ◦
◦

+
n∑

i=1

λi〈V (a1)V (ai, ai+1)〉r
[ n∏

i=1

eλiV (ai,ai+1)

]

r

,

[ n∏

i=1

eλiV (ai,ai+1)V (an+1)

]

r

≡
n∏

i=1

e
1
2
λ2

i 〈V (ai,ai+1)2〉r
∏

i<j

eλiλj〈V (ai,ai+1)V (aj ,aj+1)〉r ◦
◦

n∏

i=1

eλiV (ai,ai+1)V (an+1)
◦
◦

+
n∑

i=1

λi〈V (ai, ai+1)V (an+1)〉r
[ n∏

i=1

eλiV (ai,ai+1)

]

r

,

[
V (a1)

n∏

i=1

eλiV (ai,ai+1)V (an+1)

]

r

≡
n∏

i=1

e
1
2
λ2

i 〈V (ai,ai+1)2〉r
∏

i<j

eλiλj〈V (ai,ai+1)V (aj ,aj+1)〉r ◦
◦ V (a1)

n∏

i=1

eλiV (ai,ai+1)V (an+1)
◦
◦

+
n∑

i=1

λi〈V (a1)V (ai, ai+1)〉r
[ n∏

i=1

eλiV (ai,ai+1)V (an+1)

]

r

+

n∑

i=1

λi〈V (ai, ai+1)V (an+1)〉r
[
V (a1)

n∏

i=1

eλiV (ai,ai+1)

]

r

−
n∑

i,j=1

λiλj〈V (a1)V (ai, ai+1)〉r〈V (aj , aj+1)V (an+1)〉r
[ n∏

i=1

eλiV (ai,ai+1)

]

r

+ 〈V (a1)V (an+1)〉r
[ n∏

i=1

eλiV (ai,ai+1)

]

r

,

(B.6)

where

〈V (a) V (a, b)〉r ≡ lim
ǫ→0

[∫ b

a+ǫ
dtG(a, t) − 1

ǫ

]
, 〈V (a, b)V (b)〉r ≡ lim

ǫ→0

[∫ b−ǫ

a
dtG(t, b) − 1

ǫ

]
,

〈V (a)V (b, c)〉r ≡
∫ c

b
dtG(a, t) , 〈V (a, b)V (c)〉r ≡

∫ b

a
dtG(t, c) , 〈V (a)V (b)〉r ≡ G(a, b)

(B.7)

for a < b < c. These definitions are consistent with [V (a)eλV (a,b)]r and [eλV (a,b)V (b)]r
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in (4.47). It is easy to show that

〈V (a)V (a, c)〉r = 〈V (a)V (a, b)〉r + 〈V (a)V (b, c)〉r ,

〈V (a)V (b, d)〉r = 〈V (a)V (b, c)〉r + 〈V (a)V (c, d)〉r ,

〈V (a, c)V (c)〉r = 〈V (a, b)V (c)〉r + 〈V (b, c)V (c) 〉r ,

〈V (a, c)V (d)〉r = 〈V (a, b)V (d)〉r + 〈V (b, c)V (d)〉r

(B.8)

for a < b < c < d. The replacement assumption (III) is therefore satisfied for operators

of the form (B.6). The assumption (IV) of factorization is also satisfied because of the

definitions of 〈V (a)V (b, c)〉r , 〈V (a, b)V (c)〉r, and 〈V (a)V (b)〉r for a < b < c.

B.2 Assumption (II): calculation of QB · [OL(a)eλV (a,b)]r

Let us next prove the assumption (II) on the BRST transformation of [OL(a)eλV (a,b)]r:

QB · [OL(a)eλV (a,b)]r = − [OL(a)eλV (a,b)OR(b)]r , (B.9)

where

OL(a) = λcV (a) − λ2

2
∂c(a), OR(b) = λcV (b) +

λ2

2
∂c(b). (B.10)

The operator [OL(a)eλV (a,b)]r can be written as

[OL(a)eλV (a,b)]r = λe
1
2
λ2〈V (a,b)2〉r ◦

◦ cV (a)eλV (a,b) ◦
◦

+ λ2〈V (a)V (a, b)〉r[c(a)eλV (a,b)]r −
λ2

2
[∂c(a)eλV (a,b)]r .

(B.11)

The BRST transformation of ◦
◦ cV (a)eλV (a,b) ◦

◦ can be calculated in the following way:

QB · ◦◦ cV (a)eλV (a,b) ◦
◦

= QB · lim
ǫ→0

[
cV (a − ǫ) ◦

◦ eλV (a,b) ◦
◦ −λc(a − ǫ)

∫ b

a
dtG(a − ǫ, t) ◦

◦ eλV (a,b) ◦
◦

]

= lim
ǫ→0

[
− cV (a − ǫ)QB · ◦◦ eλV (a,b) ◦

◦ − λc∂c(a − ǫ)

∫ b

a
dtG(a − ǫ, t) ◦

◦ eλV (a,b) ◦
◦

+ λc(a − ǫ)

∫ b

a
dtG(a − ǫ, t)QB · ◦◦ eλV (a,b) ◦

◦

]
.

(B.12)

The BRST transformation of ◦
◦ eλV (a,b) ◦

◦ appearing in (B.12) has been calculated in (4.65).

The contribution from the first term λ ◦
◦ eλV (a,b)cV (b) ◦

◦ on the right-hand side of (4.65) is

lim
ǫ→0

[
− λcV (a − ǫ) ◦

◦ eλV (a,b)cV (b) ◦
◦ + λ2c(a − ǫ)

∫ b

a
dtG(a − ǫ, t) ◦

◦ eλV (a,b)cV (b) ◦
◦

]

= − λ ◦
◦ cV (a)eλV (a,b)cV (b) ◦

◦ − λG(a, b) ◦
◦ c(a)eλV (a,b)c(b) ◦

◦ .

(B.13)

The contribution from the second term −λ ◦
◦ cV (a)eλV (a,b) ◦

◦ on the right-hand side of (4.65)

diverges in the limit ǫ → 0:

λcV (a − ǫ) ◦
◦ cV (a)eλV (a,b) ◦

◦ − λ2c(a − ǫ)

∫ b

a
dtG(a − ǫ, t) ◦

◦ cV (a)eλV (a,b) ◦
◦

= λ ◦
◦ cV (a − ǫ)cV (a)eλV (a,b) ◦

◦ + λG(a − ǫ, a)c(a − ǫ)c(a) ◦
◦ eλV (a,b) ◦

◦ .

(B.14)
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The first term on the right-hand side vanishes in the limit ǫ → 0. The second term is of

O(1/ǫ), but the sum of this term and the second term on the right-hand side of (B.12) is

finite in the limit ǫ → 0:

lim
ǫ→0

[
− λc∂c(a − ǫ)

∫ b

a
dtG(a − ǫ, t) ◦

◦ eλV (a,b) ◦
◦ + λG(a − ǫ, a)c(a − ǫ)c(a) ◦

◦ eλV (a,b) ◦
◦

]

= − λ〈V (a)V (a, b)〉rc∂c(a) ◦
◦ eλV (a,b) ◦

◦ +
λ

2
c∂2c(a) ◦

◦ eλV (a,b) ◦
◦ , (B.15)

where we have used
∫ b

a
dtG(a − ǫ, t) =

1

ǫ
+ 〈V (a)V (a, b)〉r + O(ǫ) ,

G(a − ǫ, a)c(a − ǫ)c(a) − 1

ǫ
c∂c(a − ǫ) =

1

2
c∂2c(a) + O(ǫ) . (B.16)

Contributions from the remaining terms on the right-hand side of (4.65) can be easily

calculated. The final result for the BRST transformation of ◦
◦ cV (a)eλV (a,b) ◦

◦ is

QB · ◦◦ cV (a)eλV (a,b) ◦
◦ = − λ ◦

◦ cV (a)eλV (a,b)cV (b) ◦
◦ − λG(a, b) ◦

◦ c(a)eλV (a,b)c(b) ◦
◦

− λ〈V (a)V (a, b)〉r ◦
◦ c∂c(a)eλV (a,b) ◦

◦ +
λ

2
◦
◦ c∂2c(a)eλV (a,b) ◦

◦

−λ2〈V (a, b)V (b)〉r ◦
◦ cV (a)eλV (a,b)c(b) ◦

◦

−λ2

2
◦
◦ cV (a)eλV (a,b)∂c(b) ◦

◦ −
λ2

2
◦
◦ c∂cV (a)eλV (a,b) ◦

◦ . (B.17)

Using (4.47) and (B.6), the operator QB · ◦
◦ cV (a)eλV (a,b) ◦

◦ multiplied by the factor

λe
1
2
λ2〈V (a,b)2〉r can be written as follows:

λe
1
2
λ2〈V (a,b)2〉rQB · ◦◦ cV (a)eλV (a,b) ◦

◦

= − λ[cV (a)eλV (a,b)OR(b)]r + λ2〈V (a)V (a, b)〉r [c(a)eλV (a,b)OR(b)]r

− λ2〈V (a)V (a, b)〉r[c∂c(a)eλV (a,b)]r +
λ2

2
[c∂2c(a)eλV (a,b)]r

− λ3

2
[c∂cV (a)eλV (a,b)]r +

λ4

2
〈V (a)V (a, b)〉r [c∂c(a)eλV (a,b)]r .

(B.18)

The BRST transformation of [c(a)eλV (a,b)]r in (B.11) can be calculated as follows:

QB · [c(a)eλV (a,b)]r = lim
ǫ→0

QB · [c(a − ǫ)eλV (a,b)]r

= lim
ǫ→0

[c∂c(a − ǫ)eλV (a,b)]r − lim
ǫ→0

[
c(a − ǫ)QB · [eλV (a,b)]r

]

= [c∂c(a)eλV (a,b)]r − [c(a)eλV (a,b)OR(b)]r −
λ2

2
[c∂c(a)eλV (a,b)]r .

(B.19)

Similarly, the BRST transformation of [∂c(a)eλV (a,b)]r in (B.11) can be calculated as

QB · [∂c(a)eλV (a,b)]r = lim
ǫ→0

QB · [∂c(a − ǫ)eλV (a,b)]r

= lim
ǫ→0

[c∂2c(a − ǫ)eλV (a,b)]r − lim
ǫ→0

[
∂c(a − ǫ)QB · [eλV (a,b)]r

]

= [c∂2c(a)eλV (a,b)]r − [∂c(a)eλV (a,b)OR(b)]r − λ[c∂cV (a)eλV (a,b)]r .

(B.20)
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By combining the results (B.18), (B.19), and (B.20), we find

QB · [OL(a)eλV (a,b)]r = − λ[cV (a)eλV (a,b)OR(b)]r +
λ2

2
[∂c(a)eλV (a,b)OR(b)]r

= − [OL(a)eλV (a,b)OR(b)]r .

(B.21)

This completes the proof of the assumption (II).

C Marginal deformations for the constant mode of the gauge field

In [21], Fuchs, Kroyter and Potting constructed solutions for the marginal deformation

corresponding to turning on the constant mode of the gauge field. We discuss the relation

between their solutions and ours in this appendix.

The marginal operator for this deformation is

V (t) =
i√
2α′

∂tX
µ(t), (C.1)

where Xµ is a space-like direction along the D-brane.6 The solution in [21] is written

formally as a pure-gauge form using the operator Xµ. The propagator 〈Xµ(t1)X
µ(t2)〉

is logarithmic, and thus the operator Xµ does not belong to the complete set of local

operators of the boundary CFT. If we allow using Xµ, V (a, b) can be written as follows:

V (a, b) =
i√
2α′

∫ b

a
dt∂tX

µ(t) =
i√
2α′

(
Xµ(b) − Xµ(a)

)
. (C.2)

Then the operator ◦
◦ eλV (a,b) ◦

◦ can be written as

◦
◦ eλV (a,b) ◦

◦ = : eλV (a,b) : = : e
− iλ√

2α′ X
µ(a)

e
iλ√
2α′ X

µ(b)
: . (C.3)

To turn this operator into [eλV (a,b)]r , we have to multiply it by e
1
2
λ2〈V (a,b)2〉r . We notice

from the explicit expression (4.39) that

〈V (a, b)2〉r =
1

α′
〈Xµ(a)Xµ(b)〉 (C.4)

and therefore

[eλV (a,b)]r = e
1
2
λ2〈V (a,b)2〉r : e

− iλ√
2α′ X

µ(a)
e

iλ√
2α′ X

µ(b)
:

= e
λ2

2α′ 〈X
µ(a)Xµ(b)〉 : e

− iλ√
2α′ X

µ(a)
e

iλ√
2α′ X

µ(b)
:

= : e
− iλ√

2α′ X
µ(a)

: : e
iλ√
2α′ X

µ(b)
: .

(C.5)

Because of the factor e
1
2
λ2〈V (a,b)2〉r , the operator : e

− iλ√
2α′ X

µ(a)
e

iλ√
2α′ X

µ(b)
: factorized into a

product of two primary fields at a and b. We can interpret the operators : e
− iλ√

2α′ X
µ(a)

:

6 It is straightforward to incorporate the marginal operator (4.12) corresponding to the time-like direction

into the discussion.
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and : e
iλ√
2α′ X

µ(b)
: as the boundary-condition changing operators at a and b, respectively.

The conformal properties of the operator [eλV (a,b)]r discussed in section 4.5 are manifest in

this expression. In particular, the conformal dimension of : e
± iλ√

2α′ X
µ(t)

: is λ2/2 and thus

consistent with h(λ) = O(λ2) found in section 4.5.

Let us see how the operators OL and OR arise from this expression. Using the formula

QB · : e
± iλ√

2α′ X
µ

: = :

(
±λ

i√
2α′

c∂tX
µ +

λ2

2
∂c

)
e

±iλ√
2α′ X

µ

:

= :
(
±λcV +

λ2

2
∂c

)
e

±iλ√
2α′ X

µ

:,

(C.6)

the BRST transformation of [eλV (a,b)]r can be calculated as follows:

QB ·
[
eλV (a,b)

]
r

= : e
− iλ√

2α′ X
µ(a)

: :
(
λcV (b) +

λ2

2
∂c(b)

)
e

iλ√
2α′ X

µ(b)
:

− :
(
λcV (a) − λ2

2
∂c(a)

)
e
− iλ√

2α′ X
µ(a)

: : e
iλ√
2α′ X

µ(b)
: .

(C.7)

We have thus reproduced our previous result for OL and OR:

O
(1)
R = O

(1)
L = cV, O

(2)
R = − O

(2)
L =

1

2
∂c, O

(n)
R = O

(n)
L = 0 for n ≥ 3 . (C.8)

The operator [eλV (a,b)]r is written in (C.5) in terms of the exponential operators in the

complete set of local operators and thus well defined. When we construct our solution, we

have to expand [eλV (a,b)]r in λ to obtain [V (n)(a, b)]r. We can write [V (n)(a, b)]r in terms

of local operators in the complete set as we did in section 4, but if we allow using Xµ,

[eλV (a,b)]r can also be expanded in λ as

[
eλV (a,b)

]
r

=
∞∑

n=0

λn

(
i√
2α′

)n n∑

k=0

(−1)k

k!(n − k)!
:
(
Xµ(a)

)k
: :

(
Xµ(b)

)n−k
: , (C.9)

and the state U (n) for n ≥ 1 is

〈φ,U (n)〉 =

n∑

k=0

(
i√
2α′

)n (−1)k

k!(n − k)!

〈
f ◦ φ(0) :

(
Xµ(1)

)k
: :

(
Xµ(n)

)n−k
:
〉
Wn

. (C.10)

The state U can be formally factorized [21] as follows:

U = ΛL ∗ ΛR , (C.11)

where

ΛL = 1 +

∞∑

n=1

λnΛ
(n)
L , ΛR = 1 +

∞∑

n=1

λnΛ
(n)
R (C.12)

with

〈φ ,Λ
(n)
L 〉 =

1

n!

(
− i√

2α′

)n〈
f ◦ φ(0) :

(
Xµ(1)

)n
:
〉
Wn

,

〈φ ,Λ
(n)
R 〉 =

1

n!

(
i√
2α′

)n〈
f ◦ φ(0) :

(
Xµ(n)

)n
:
〉
Wn

.

(C.13)
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The BRST transformation of U is

QBU = (QBΛL) ∗ ΛR + ΛL ∗ (QBΛR) , (C.14)

and we find

AL = − (QBΛL) ∗ ΛR , AR = ΛL ∗ (QBΛR) . (C.15)

The solutions ΨL and ΨR can thus be written as

ΨL = AL ∗ U−1 = − (QBΛL) ∗ Λ−1
L , ΨR = U−1 ∗ AR = Λ−1

R ∗ (QBΛR) . (C.16)

These expressions in the pure-gauge form coincide with the solutions in [21].7 Since the real

solution Ψ constructed in section 3.4 is related to ΨL and ΨR by gauge transformations,

Ψ can also be written in a pure-gauge form:

Ψ = −
[
QB

( 1√
U

∗ ΛL

)]
∗

(
Λ−1

L ∗
√

U
)

=
(√

U ∗ Λ−1
R

)
∗

[
QB

(
ΛR ∗ 1√

U

)]

=
1

2

(√
U ∗ Λ−1

R

)
∗

[
QB

(
ΛR ∗ 1√

U

)]
− 1

2

[
QB

( 1√
U

∗ ΛL

)]
∗

(
Λ−1

L ∗
√

U
)
.

(C.17)

In the last expression, Ψ is manifestly real because Λ‡
R = ΛL. We have thus solved the

problem of finding a real solution in a pure-gauge form raised in [25].

The states ΛL and ΛR cannot be written in terms of local operators in the complete

set, while the solutions ΨL and ΨR can be written without using Xµ, as we have explicitly

demonstrated in section 4. It is, however, highly nontrivial to derive such an expression

of ΨL or ΨR from the pure-gauge form in [21]. We could attempt, for example, to write

Xµ(a) as

Xµ(a) = −
∫ ∞

a
dt∂tX

µ(t) (C.18)

with the prescription that the contribution of its BRST transformation from the boundary

t = ∞ vanishes and with the condition that the “flux” to infinity cancels in the solution.

While this picture could give some useful insight, it is obviously formal and it seems to be

difficult to make such approaches well defined in general.

We have seen that the operator Xµ used in [21] as the basic object in the construction

of the solution is formally the logarithm of the boundary-condition changing operator

corresponding to the marginal deformation. Thus the solution in [21] can be generalized to

other marginal deformations if an expansion of the boundary-condition changing operator

in λ is given. However, the terms in the expansion do not belong to the complete set of

local operators, and it is not clear how to calculate correlation functions involving such

7 When the polarization vector ǫν of [21] is given by ǫν = ηµν , our λ is related to that of [21] as follows:

λFKP =
i√
2
λours .

Note in particular that their λ must be imaginary for the solution at O(λ) to satisfy the reality condition.
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operators in general. Let us, for example, consider the deformation by the cosine potential

along a space-like direction Xµ which is compactified at the self-dual radius. In this case,

the expansion of the boundary-condition changing operator can be written in terms of

: (Y µ)n :, where Y µ is the free boson in the different description we mentioned in section 4.2.

We then need to calculate correlation functions involving both : (Y µ)n : and operators in

the Xµ description, for example, when we expand the solution in the component fields.

While the approach in [21] can be practically useful for the particular marginal defor-

mation (C.1), we believe that our approach has an advantage in the generalization to other

marginal deformations. In particular, we do not need to enlarge the Hilbert space of the

boundary CFT at any intermediate stage, which we believe will be a useful feature when

we address the question of background independence in string field theory.
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